HITACHI

TROUBLESHOOTING MANUAL

TROUBLESHOOTING MANUAL

First Edition, November 2005, SVE-3-001(B)
All Rights Reserved, Copyright © 2005, Hitachi, Ltd.
The contents of this publication may be revised without prior notice.
No part of this publication may be reproduced in any form or by any means without permission in writing from the publisher.

Printed in Japan.

SAFETY PRECAUTIONS

Be sure to read this manual and all other attached documents carefully before installing, operating inspecting or conducting maintenance on this unit. Always use this unit properly. Be sure to carefully read the information about the device, the safety information and precautions before using this unit. Be sure that the person(s) responsible for maintenance receives and understands this manual completely.

This manual divides the safety precautions into DANGERs and CAUTIONs.

: Failure to observe these warnings may result in death or serious injury.

A CAUTION

Failure to observe any
: Failure to observe these cautions may result in injury or property damage.

All of these DANGERs and CAUTIONs provide very important precautions and should always be observed.
Additional safety symbols representing a prohibition or a requirement are as follows:

θ
: Prohibition. For example, "Do not disassemble" is represented by:
(! : Requirement. For example, if a ground is required, the following will be shown:

1. Installation Precautions

REQUIREMENT

- Fasten the mount base to a vertical surface. Fastening the mount base to a horizontal surface lessens the heat dissipation effects and allows the temperature to rise, thereby rendering the module defective or incurring component parts deterioration.
- Before installing the module, discharge any static buildup from your body because static electricity may render the module defective.
- Properly tighten the screws. If they are inadequately tightened, malfunction, smoke emission, or combustion may occur.

1. CAUTION

- Use the module in an environment specified in the catalog and manual.

If you use the module in an environment where the module is subjected to high temperature, high humidity, dust, corrosive gas, vibration, or impact, a risk of electric shock, fire, or malfunction may result.

- Observe the installation procedure stated in the manual.

If the module is improperly installed, it may drop, become defective, or malfunction.

- Do not allow wire cuttings or other foreign matter to enter the module. The entry of foreign matter in the module may result in a fire or cause the module to become defective or malfunction.
- When the module is to be positioned at a location where it may become wet with water, place it within a drip-proof enclosure to prevent it from becoming defective.

A. CAUTION

- The module may become defective due to a high temperature, which may result from heat dissipation failure. It may also malfunction due to electromagnetic interference from nearby equipment. For heat dissipation and electromagnetic radiation minimization, provide the specified clearances among the module, its enclosure, and neighboring equipment.
- The degree of temperature rise varies depending on how the module is mounted. The mounting intervals specified in the manual should be used as a guide only. While a test run is conducted after completion of mounting, measure the temperature near the module to check whether it is within the specified range. If the measured temperature is beyond the specified range, increase the mounting intervals or provide forced air cooling with a cooling fan.
- Dust or other foreign matter might accumulate on the connector, resulting in poor contact. Immediately after the module is unpacked, perform the mounting and wiring procedures.
- To prevent the module from being damaged, observe the following precautions when you mount or demount the module:
- Before mounting the module to the mount base connector, check that the connector pins are properly aligned and not bent, broken, or soiled with dirt or the like.
- Ensure that the module is parallel to the mount base vertical surface as shown below when mounting. If you connect a module to or disconnect it from its connector while it is tilted, the connector pins may become damaged.
[Bad example]

[Good example]

> PROHIBITION
> Do not take the insulation sheets off the mount base. These insulation sheets electrically insulate the modules from the mount base.

| |
| :--- | | Do not disassemble or modify the module. Failure to observe this precaution |
| :--- |
| may result in a fire or cause the module to become defective or malfunction. |

2. Wiring Precautions

(! REQUIREMENT

- To provide protection against short circuit, furnish the external power source with a fuse or circuit protector. Ensure that the employed circuit protector is rated as specified.
- Before supplying power to the equipment, thoroughly check the wiring connections.
- Surge voltage may cause malfunction or damage to this product. When you connect coils, such as relays, to the PCsOK output circuit, be sure to add surge-absorbing diodes or the equivalent to that circuit. The peak reverse voltages of these diodes must be at least 10 times as high as the circuit voltage and their forward currents must be larger than the load current.
- Before making power supply wiring connections, make sure that no voltage is applied to the power cable. Immediately after completion of power supply wiring, be sure to install the terminal cover.
- Ensure that the communication, power supply, motive power, and other cables are routed apart from each other. It is essential that the inverter, motor, power regulator, and other motive power cables be routed at least 300 mm away from the other types of cables. Also, be sure that the communication and motive power cables are routed within separate conduits.

$\xlongequal{\perp}$ REQUIREMENT

- Insulate the mount base from the enclosure. To keep the mount base insulated, avoid removing the insulation sheets that are supplied with the mount base.
- The LG is a ground terminal for power supply noise. The FG and SHD are ground terminals for the noise in the remote I/O, communication module and other external interface lines. To avoid interference between the ground terminals, separately ground the LG and FG.
- Connect each module's FG terminal to the FG terminal provided on the mount base and ground those terminals properly. The FG terminals for remote I/O lines and JPCN-1 (J.NET or IR.LINK) lines must be grounded at one place (LPU unit) for each line -- the FG terminals of remote I/O station and JPCN-1 station (J.Station or IR.Station) modules that can be grounded at the same place as is the LPU unit must all be grounded.

A. CAUTION

- If the input voltage for the power supply module is within the specified range but close to the upper or lower limit, you should conclude that an input power problem exists, and ask the power supply facility manager to conduct an inspection.
- Be sure that the power source for supplying power to various modules is rated as specified. The use of a differently rated power source may cause a risk of fire.
- Ensure that the same power source is used for output module external power source (for supplying power to the +V terminal) and load power supply. The use of different power sources may cause a risk of malfunction.
- Only qualified personnel should be allowed to make cable connections. Incorrect wiring connections may cause a risk of fire, malfunction, or electric shock.

! REQUIREMENT

- Before terminating this product (by shutting down or resetting), check that all the peripheral equipment is already stopped or will not be affected by the termination.
- Failure of an installed module may damage the contents of memory spaces. Be sure to make a backup copy of any important data in memory.
- Overheating may cause a fire or unit failure. Where the ambient temperature reaches $48^{\circ} \mathrm{C}$ or higher, lower the maximum output current that can be drawn from the power supply module. By taking into consideration the environment where the unit is mounted, install a cooling fan in the housing enclosure or reduce the number of modules mounted.

A CAUTION

- Before changing the program, generating a forced output, or performing the RUN, STOP, or like procedure during an operation, thoroughly verify the safety because the use of an incorrect procedure may cause equipment damage or other accident.
- When you switch on the power supply, follow the specified power-on sequence. Failure to follow the specified sequence may cause equipment damage or other accident.

1
 CAUTION

- Do not use a transceiver, cellular phone, or similar device near the unit because unit malfunction or system failure may occur due to noise.
- The parts, which used gallium arsenic (GaAs) for a photo coupler and LED, are included in this product. GaAs is specified as a harmful object by law. Take special care when handling the product, in particular, scrapping it. Before scrapping the product, ask a professional waste disposal dealer in charge of scrapping work.
- To avoid malfunction, ensure that the power supply is switched on and off at intervals of longer than 1 second.

PROHIBITION

- Do not carry out any installation, wiring, handling, and remodeling not covered in this manual. The manufacturer is not liable to any damage to the product and peripheral equipment and/or bodily injury due to such an improper practice.
- Never insert your finger or foreign matter into the gap between a connector and the mount base. Disregarding this rule may result in a bodily injury..

This manual provides troubleshooting information for the following hardware and program products:
(SVE-3-001(B))

Hardware products>			
LPU	(LQP510)	J.NET	(LQE540)
CMU	(LQP520)	J.NET-INT	(LQE545)
Power supplies	(LQV000/LQV100/LQV020)	IR.LINK	(LQE546)
ET.NET	(LQE520/LQE720)	D.NET	(LQE570/575)
SD.LINK	(LQP530)	SV.LINK	(LQE521)
OD.RING	(LQE510/515)	EQ.LINK	(LQE701)
FL.NET	(LQE500/502)	RI/O	(LQS000)
CPU LINK	(LQE550)	J.Station	(LQS020)
RS-232C	(LQE560)	IR.Station	(LQS021)
RS-422	(LQE565)	D.Station	(LQS070)

<Program products>	
S-7895-01 "S10Tools SYSTEM"	
S-7895-02 "LADDER CHART SYSTEM"	$01-08$
S-7895-03 "HI-FLOW SYSTEM"	$01-08$
S-7895-07 "CPMS DEBUGGER SYSTEM"	$01-06$
S-7895-09 "BACKUP RESTORE SYSTEM"	$01-01$
S-7895-10 "RPDP/S10V SYSTEM"	$01-03$
S-7895-11 "NX/ACP-S10V"	$01-00 \mathrm{~B}$
S-7895-12 "NX/Ladder"	$01-00$
S-7895-13 "NX/Tools-S10V SYSTEM"	$01-00$
S-7895-14 "NX/HOST-S10V"	$01-01$
S-7895-22 "CPU LINK SYSTEM"	$01-00$
S-7895-24 "EXTERNAL SERIAL LINK SYSTEM" $01-00$	
S-7895-27"J.NET SYSTEM"	$01-01$
S-7895-28 "OD.RING/SD.LINK SYSTEM"	$01-00$
S-7895-29 "ET.NET SYSTEM"	$02-00$
S-7895-30 "FL.NET SYSTEM"	$01-00$
S-7895-31 "D.NET SYSTEM"	$01-01$
S-7895-36 "IR.LINK SYSTEM"	$01-00$
S-7895-38 "BASE SYSTEM"	$01-04$
S-7895-41 "EQ.LINK SYSTEM"	$01-01$
S-7895-60 "RCTLNET"	$01-00$

$<$ Changes added to this manual>

Description of added changes	Page
New information is added to Section 3.4, "Backing Up and Restoring."	64
Section 3.16, "ET.NET (LQE720) Error Information," is newly added.	165
Section 3.17, "Error Freeze Information," is newly added.	168
Section 3.18, "Memory Dump Procedure," is newly added.	173
Section 3.19, "Network Information," is newly added.	177
Section 3.20, "Network Maintenance Commands," is newly added.	200
Error log information is added to Subsection 4.2.2, "CMU (model LQP520) error log info and required actions."	222
Error log information is added to Subsection 4.2.13, "EQ.LINK (model LQE701) error log info and required actions."	244
Error log information is added to Subsection 4.2.14, "ET.NET (model LQE720) error log info and required actions."	246
Error log information is added to Subsection 4.2.15, "NCP-F (model LQE780-Z) error log info and required actions."	249
Error log information is added to Subsection 4.2.16, "LANCP (model LQE790-Z/ LQE795-Z) error log info and required actions."	254
Section 4.3, "CMU Error Message Format," is newly added.	255
Section 4.4, "RPDP Error Log Display Guide," is newly added.	259
Section 4.5, "Maintenance Commands," is newly added.	340
New error messages are added to Subsection 5.1.12, "Error messages from the EQ.LINK SYSTEM."	370
New error messages are added to Subsection 5.1.13, "Error messages from the BACKUP RESTORE SYSTEM."	371
New error messages are added to Subsection 5.1.14, "Error messages from the NX/Tools-S10V SYSTEM."	372
New error messages are added to Subsection 5.1.15, "Error message from the tools."	376

(SVE-3-001(B))
$<$ Changes added to program products>

Program product	
Description of added changes	
S-7895-29, "ET.NET SYSTEM", 02-00	ET.NET (LQE720) support is newly added.
S-7895-38, "BASE SYSTEM", $01-04$	ET.NET (LQE720) support is newly added.
S-7895-41, "EQ.LINK SYSTEM", 01-01	EQ.LINK (LQE701) support is newly added.

In addition to the above changes, all the unclear descriptions and typographical errors found are also corrected without prior notice.

Revision record

Revision No.	Revision Record (revision details and reason for revision)	Month, Year	Remarks
B	First Edition	November 2005	

PREFACE

Thank you for purchasing Hitachi's programmable controller (S10V).
This manual provides information on how to perform troubleshooting correctly when a problem arises with the product. Please read this manual carefully when troubleshooting the product, and use the product properly.

The S10V product is available in two types: standard model and environmentally resistant model. The environmentally resistant model has thicker platings and coatings than those for the standard model.

The model number of the environmentally resistant model is marked by adding the suffix "-Z" to the model number of the standard model.
(Example) Standard model: LQP510
Environmentally resistant model: LQP510-Z

This manual is applicable to both the standard model and environmentally resistant models.
Although the descriptions contained in this manual are based on the standard model, follow the instructions set forth in this manual for proper use of the product even if you use the environmentally resistant model.
<Trademarks>

- Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ operating system, Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 95$ operating system, Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 98$ operating system, Microsoft ${ }^{\circledR}$ Windows $\circledR 2000$ operating system, Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP operating system are registered trademarks of Microsoft Corporation in the United States and/or other countries.
- Ethernet ${ }^{\circledR}$ is a registered trademark of Xerox Coporation.
- DeviceNet is a registered trademark of ODVA (Open DeviceNet Vendor Association, Inc.)
- MELSEC is a trademark of Mitsubishi Electric Corporation.
<Note for storage capacity calculations>
- Memory capacities and requirements, file sizes and storage requirements, etc. must be calculated according to the formula 2^{n}. The following examples show the results of such calculations by 2^{n} (to the right of the equals signs).
$1 \mathrm{~KB}($ kilobyte $)=1024$ bytes
$1 \mathrm{MB}($ megabyte $)=1,048,576$ bytes
$1 \mathrm{~GB}($ gigabyte $)=1,073,741,824$ bytes
- As for disk capacities, they must be calculated using the formula 10^{n}. Listed below are the results of calculating the above example capacities using 10^{n} in place of 2^{n}.
$1 \mathrm{~KB}($ kilobyte $)=1000$ bytes
$1 \mathrm{MB}($ megabyte $)=1000^{2}$ bytes
$1 \mathrm{~GB}($ gigabyte $)=1000^{3}$ bytes

CONTENTS

1 PRELIMINARY CHECKING 1
2 TROUBLESHOOTING 5
2.1 Troubleshooting Procedure 6
2.2 Troubleshooting Maps 7
LPU

- None of the LED indicators comes on 8
- The ERR indicator (LED) is lit 8
- The remote I/O process produces outputs but does not accept inputs 9
- The PCs OK output is OFF. 9
- The sequence program does not run. 10
- A DI/O or AI/O module mounted on the same mount base as is the LPU module does not run normally 10
CMU
- Data communication is not possible with the Tool (personal computer or PC) 11
PS Power supply
- The POWER ON indicator (LED) does not come on 12
FL.NET
- The TX and RX indicators (LEDs) do not come on normally 13
- The LER indicator (LED) is lit 13
- Other problems 13
- Common network problems and troubleshooting 14
- FL.NET usage precautions 17
OD.RING, SD.LINK
- The TX and RX indicators (LEDs) do not come on normally. 18
- The ERR indicator (LED) is lit 18
ET.NET (LQE520)
- Communication is initially not possible 19
- Communication is not possible with the Tool (PC) 20
SV.LINK
- The TX and RX indicators (LEDs) do not come on normally 21
- The ERR indicator (LED) is lit 21
- Other problems 21

J.NET, J.NET-INT

- The TX and RX indicators (LEDs) do not come on normally... 22
- The ERR indicator (LED) is lit. ... 23
- Other problems.. 23

IR.LINK

- The TX and RX indicators (LEDs) do not come on normally... 24
- The ERR indicator (LED) is lit. ... 25
- Other problems.. 25

CPU LINK Inter-CPU link

- The LINK indicator (LED) does not come on. ... 26

RC-232C, RS-422

- The TX and RX indicators (LEDs) do not come on normally.. 27
- The ERR indicator (LED) is lit. ... 27
D.NET
- The MNS indicators (LEDs) do not come on normally.. 28
- Other problems... 28

EQ.LINK

- The TX and RX indicators (LEDs) do not come on normally... 29
- The LER indicator (LED) is lit. ... 29
- Other problems.. 29
- Common network problems and troubleshooting.. 30
- EQ.LINK usage precautions. ... 31

ET.NET (LQE720)

- Communication is initially not possible. .. 32
- Communication is not possible with the Tool (PC)... 33
- Data transmission is not possible from ladder applications... 33
- Data transmission is not possible from HI-FLOW applications 33

RI/O

- The RI/O indicator (LED) does not come on.. 34

J.Station

- The J-NET indicator (LED) does not come on normally.. 35
- The ERR indicator (LED) is lit. ... 35

IR.Station

- The TX/RX indicator does not come on normally.. 36
- The ERR indicator (LED) is lit. ... 36
D.Station
- The MNS indicators (LEDs) do not come on normally 37
- Other problems 37
A.INPUT Analog input
- Input data cannot be input normally. 38
A.INPUT Scan-type analog input
- Input data cannot be input normally. 39
A.OUTPUT Analog output
- The output voltage and current are abnormal 40
D.INPUT Digital input
- None of the input points is turned on. 41
- Only a particular input point is not turned on 41
- None of the input points is turned off. 42
- The input is turned on of off irregularly. 42
- Only a particular input point is not turned off. 42
D.OUTPUT Digital output
- None of the load points is turned on 43
- Only a particular load point is not turned on. 43
- None of the load points is turned off. 44
- Only a particular load point is not turned off. 44
- The load is turned on of off irregularly 45
D.IN/OUT Digital input/output
- Input or output is malfunctioning 46
COUNTER Pulse counter
- The counter does not count pulses 47
- The count value is not correct 48
- No external comparison output is produced 48
Tool (personal computer) connection
- No connection can be established with the PCs (via RS-232C) 49
- No connection can be established with the PCs (via Ethernet [ET.NET module]) 49
3 TECHNICAL SUPPORT INFORMATION 51
3.1 Remote I/O Troubleshooting 52
3.2 LPU Error Information Detail Table 58
3.3 Clearing the Entire Memory 63
3.4 Backing Up and Restoring 64
3.5 Performance 85
3.6 Address Space Maps 88
3.7 Registers 93
3.7.1 Ladder instructions and usable registers. 93
3.7.2 Register numbers 95
3.7.3 System registers 97
3.8 Memory Maps for Optional Modules 107
3.9 FL.NET (Model LQE500/LQE502) Error Information 116
3.10 OD.RING (Model LQE510/515) and SD.LINK (Model LQE530) Communication Traces 119
3.11 ET.NET (Model LQE520) Error Information 126
3.11.1 Error codes from the socket handler. 126
3.11.2 Routing information setting error table 129
3.12 SV.LINK (Model LQE521) Error Information 130
3.13 J.NET (Model LQE541), J.NET-INT (Model LQE547), and IR.LINK (Model LQE548) Trace Information 132
3.13.1 Command and response buffers 132
3.13.2 Data send and data receive buffers 134
3.13.3 Error counters 136
3.13.4 Trace 137
3.14 RS-232C (Model LQE560) and RS-422 (Model LQE565) Trace Information 140
3.14.1 Communication tracing 140
3.14.2 Handler tracing 142
3.14.3 H-7338 error tracing 144
3.14.4 Error counters 146
3.15 D.NET (Model LQE570/575) Statistical and Error Information 147
3.16 ET.NET (Model LQE720) Error Information 165
3.16.1 Error codes from the socket handler. 165
3.17 Error Freeze Information 168
3.18 Memory Dump Procedure 173
3.19 Network Information. 177
3.19.1 Displaying network information 177
3.19.2 Network information details 179
3.20 Network Maintenance Commands 200
3.20.1 Usage 201
4 ERROR LOG INFORMATION 217
4.1 Displaying Error Log Information 218
4.2 Error Log Information and Required Actions 219
4.2.1 LPU (model LQP510) error log info and required actions 219
4.2.2 CMU (model LQP520) error log info and required actions 222
4.2.3 FL.NET (model LQE500/502) error log info and required actions 226
4.2.4 OD.RING (model LQE510/515) error log info and required actions 228
4.2.5 ET.NET (model LQE520) error log info and required actions 229
4.2.6 SV.LINK (model LQE521) error log info and required actions 230
4.2.7 SD.LINK (model LQE530) error log info and required actions 231
4.2.8 J.NET (model LQE541) / J.NET-INT (model LQE547) error log info and required actions 232
4.2.9 IR.LINK (model LQE548) error \log info and required actions 235
4.2.10 CPU LINK (model LQE550) error log info and required actions 238
4.2.11 RS-232C (model LQE560) / RS-422 (model LQE565) error log info and required actions 239
4.2.12 D.NET (model LQE570/575) error log info and required actions 242
4.2.13 EQ.LINK (model LQE701) error \log info and required actions 244
4.2.14 ET.NET (model LQE720) error \log info and required actions 246
4.2.15 NCP-F (model LQE780-Z) error log info and required actions 249
4.2.16 LANCP (model LQE790-Z/795-Z) error log info and required actions 254
4.3 CMU Error Message Formats 255
4.3.1 Panic log error message formats 255
4.3.2 Non-panic log error message formats 256
4.4 RPDP Error Log Display Guide. 259
4.4.1 Reading the error log. 259
4.4.2 Types of error logs 261
4.4.3 Error log details and analysis 263
(1) Program error 263
(2) Macro parameter check error 270
(3) I/O error. 272
(4) Watchdog timer timeout error 286
(5) Module error 287
(6) Kernel warning 297
(7) Kernel information 298
(8) System down -- system error 299
(9) System down -- kernel trap 301
(10) System down -- built-in subroutine error 302
(11) System down -- built-in subroutine stoppage 304
(12) ADT error 305
(13) Memory error 310
(14) System bus error 324
(15) Other error 334
4.4.4 Reading the DHP trace information 335
4.5 Maintenance Commands 340
5 APPENDIX 349
5.1 Tool Error Messages 350
5.1.1 Error messages from the LADDER CHART SYSTEM 350
5.1.2 Error messages from the HI-FLOW SYSTEM 359
5.1.3 Error messages from the BASE SYSTEM 362
5.1.4 Error messages from the FL.NET SYSTEM. 363
5.1.5 Error messages from the OD.RING/SD.LINK SYSTEM 363
5.1.6 Error messages from the ET.NET SYSTEM 364
5.1.7 Error messages from the J.NET SYSTEM 365
5.1.8 Error messages from the IR.LINK SYSTEM 366
5.1.9 Error messages from the CPU LINK SYSTEM 367
5.1.10 Error messages from the EXTERNAL SERIAL LINK SYSTEM 367
5.1.11 Error messages from the D.NET SYSTEM 368
5.1.12 Error messages from the EQ.LINK SYSTEM 370
5.1.13 Error messages from the BACKUP RESTORE SYSTEM 371
5.1.14 Error messages from the NX/Tools-S10V SYSTEM 372
5.1.15 Error messages from the tools 376
5.2 Trouble Report 377

FIGURES

Figure 3-1 Address Space Map of the LPU Unit 88
Figure 3-2 Address Space Map to the PIO-RAM Bit Area 89
Figure 3-3 Address Space Map to the PIO-RAM Word Area (1) 90
Figure 3-4 Address Space Map to the PIO-RAM Word Area (2) 91
Figure 3-6 Trace Area Structure 137
Figure 3-7 Trace Data Area Structure (for J.NET and J.NET-INT) 138
Figure 3-8 Trace Data Area Structure (for IR.LINK) 139
Figure 3-9 Stack Frame Details (1) 171
Figure 3-10 Stack Frame Details (2) 172
Figure 3-11 Binary File Format for Memory Dumps 174
Figure 4-1 Example of a Displayed Error Log 259
Figure 4-2 Program Error Analysis Procedure 266

TABLES

Table 3-1 Memory Areas Subjected to Backing up and Restoring 64
Table 3-2 Backup Areas Used by Optional-Module Setting Tools 80
Table 3-3 Backup Areas 82
Table 3-4 Items Displayed in the [Performance] Window 85
Table 3-5 Usable Registers 93
Table 3-6 Register Numbers 95
Table 3-7 System Registers 97
Table 3-8 Error Codes from the Socket Handler (LQE520) 126
Table 3-9 Trace Buffer Structure (for Communication Tracing) 140
Table 3-10 Trace Data Area Details (for Communication Tracing) 141
Table 3-11 Trace Buffer Structure (for Handler Tracing) 142
Table 3-12 Trace Data Area Details (for Handler Tracing) 143
Table 3-13 Trace Buffer Structure (for H-7338 Error Tracing) 144
Table 3-14 Trace Data Area Details (for H-7338 Error Tracing) 145
Table 3-15 Error Codes in H-7338 Error Trace Information 145
Table 3-16 Error Counters 146
Table 3-17 Error Codes from the Socket Handler 165
Table 4-1 Panic Log Error Message Formats 255
Table 4-2 Panic Log Default Error Messages 255
Table 4-3 Non-Panic Log Error Message Formats 256
Table 4-4 Non-Panic Log Default Error Messages 257
Table 4-5 Types of OS Error Logs 261
Table 4-6 Types of NXACP Error Logs 262
Table 4-7 Program Error Message Format 264
Table 4-8 Error Codes, Subtitles, and Their Meanings (for Program Errors) 265
Table 4-9 Macro Parameter Check Error Message Format 270
Table 4-10 Predefined Supervisory Macro Codes and Macro Names Identified by Them 271
Table 4-11 I/O Error Message Format 272
Table 4-12 Error Detail Data for Built-in LANCE-/LANCE-Detected I/O Errors ($\mathrm{EC}=0 \times 078013 \mathrm{XX}$) 274
Table 4-13 Error Detail Data for Built-in LANCE PCI Bus I/O Errors ($\mathrm{EC}=0 \times 078014 \mathrm{XX}$) 276
Table 4-14 Error Detail Data for LANCP I/O Errors (EC=0x078016XX) 281
Table 4-15 Error Detail Data for Driver-Detected I/O Errors (EC=0x078015XX) 282
Table 4-16 I/O Error Message Format 283
Table 4-17 Error Codes, Subtitles, and Their Meanings (for I/O Errors) 284
Table 4-18 Error Detail Data for ROM Board Errors 284
Table 4-19 Watchdog Timer Timeout Error Message Format 286
Table 4-20 Module Error Message Format 287
Table 4-21 Error Codes, Subtitles, and Their Meanings (for Module Errors) 288
Table 4-22 MSW Detail Data for Modules. 291
Table 4-23 Kernel Warning Message Format 297
Table 4-24 Error Code and Its Meaning (for Kernel Warnings) 297
Table 4-25 Kernel Information Message Format 298
Table 4-26 System Down (System Error) Message Format 299
Table 4-27 Error Codes, Subtitles, and Their Meanings (for System Errors) 300
Table 4-28 Kernel Trap Message Format 301
Table 4-29 System Down (Built-in Subroutine Error) Message Format 302
Table 4-30 Error Codes, Subtitles, and Their Meanings (for Built-in Subroutine Errors) 303
Table 4-31 System Down (Built-in Subroutine Stoppage) Message Format 304
Table 4-32 ADT Error Message Format 305
Table 4-33 Memory Error Message Format 310
Table 4-34 The Set Values of MST_TYPE and MST_INFO 323
Table 4-35 System Bus Error Message Format 324
Table 4-36 Error Codes 333
Table 4-37 Other-Error Message Format 334
Table 4-38 DHP Codes 336

1 PRELIMINARY CHECKING

Perform the following preliminary checks to eliminate obvious problems before

 troubleshooting the product:- Check that terminating resistors are connected to both ends of the inter-LPU links chain established.

Both ends of the inter-LPU link line must be terminated with terminating resistors.

- Check that terminating resistors are connected to both ends of the remote I/O line. Both ends of the remote I/O line must be terminated with terminating resistors.

- Is the cabling correct?

Check the cables for disconnection or incorrect connection.

- Are the modules mounted correctly?

Check that no set screws are loosened.

- Is grounding correct?
- Do not ground the D.NET module in the same place where high-voltage equipment is grounded. They must be grounded in separate places.
- Perform grounding work conforming to Class D^{*} or higher grounding standard.

- Are the LG and FG separated?
- Be sure to separate the LG from the FG or vice versa because power noise enters the FG via the LG. Failure to observe this rule may result in an equipment malfunction.
- Ground the LG at the power supply side.

* Class D grounding is defined in the Technical Standard for Electrical Facilities of Japan. This standard states that the grounding resistance must be 100 ohms or less for equipment operating on 300 VAC or less, and 500 ohms or less for devices that shut down automatically within 0.5 seconds when shorting occurs in low tension lines.

2 TROUBLESHOOTING

2 TROUBLESHOOTING

2.1 Troubleshooting Procedure

2.2 Troubleshooting Maps

The troubleshooting maps provided in this section serve as a guide to help users troubleshoot their systems as quickly as possible in the event of a problem. Each troubleshooting map has the following general format:

- None of the LED indicators comes on.

Check if:	What to do
The power supply module is operating abnormally.	If true, follow the troubleshooting map for the power supply module in order to check out the said module.
The LPU and/or the power supply module is installed incorrectly.	If true, install them correctly.
The supply voltage from the power supply module is abnormal.	If true, replace the power supply module.
Required checks	

- None of the LED indicators comes on.

Check if:	What to do
The power supply module is operating abnormally.	If true, follow the troubleshooting map for the power supply module in order to check out the said module.
The LPU and/or the power supply module is installed incorrectly.	If true, install them correctly.
The supply voltage from the power supply module is abnormal.	If true, replace the power supply module.

- The ERR indicator (LED) is lit.

Check if:	What to do
An LPU error is recorded in the error log.	If true, troubleshoot according to the instructions given under "4 ERROR LOG INFORMATION."

- The remote I/O process produces outputs but does not accept inputs.

Check if:	What to do
A terminating resistor(s) are installed between the following terminals for the LPU:	If not, install them.
RI/O1 $\rightarrow\left(\begin{array}{ll}100 \Omega: \text { Terminals A6 and A7 } \\ 150 \Omega: \text { Terminals A5 and A7 }\end{array}\right.$	
RI/O2 $\rightarrow\left(\begin{array}{l}100 \Omega: \text { Terminals B5 and B6 } \\ 150 \Omega: \text { Terminals B4 and B6 }\end{array}\right.$	

- The PCs OK output is OFF.

Check if:	What to do
The LADDER switch is set in STOP position.	If true, set it in RUN position.
The LPU module's ERR indicator (LED) is lit.	If true, check the error log to see if an LPU error is recorded. If so, troubleshoot according to the instructions given under "4 ERROR LOG INFORMATION."
The SIMU indicator (LED) is lit.	If true, change the LADDER MODE to "NORM" in the S10V BASE SYSTEM.
The power supply module is abnormal.	If true, follow the troubleshooting map for the power supply module in order to check out the said module.
The wiring or connections are made correctly.	If not, correct them.

- The sequence program does not run.

Check if:	What to do
The LADDER switch is set in STOP position.	If true, set it in RUN position.
The LPU module's ERR indicator (LED) is lit.	If true, check the error log to see if an LPU error is recorded. If so, troubleshoot according to the instructions given under "4 ERROR LOG INFORMATION."
The SIMU indicator (LED) is lit.	If true, change the LADDER MODE to "NORM" in the S10V BASE SYSTEM.
External STOP input is in process.	If true, turn it off.
The program has a bug.	If true, correct it.

- A DI/O or AI / O module mounted on the same mount base as is the LPU module does not run normally.

Check if:	What to do
The LPU module's I/O number setting is	If true, set it correctly according to the missing or erroneous. instructions given under USER'S SETTINGS" in the "S10V MODULES (manual number SVE-1- 100)."

CMU
LQP520

- Data communication is not possible with the Tool (personal computer or PC).

Check if:		What to do
In cases where data communications are carried out by using the CMU module whose IP address is set to a fixed value of"192.192.192.1":	The ST.No. U and L switches are both set in Fposition.	If not, set both in F-position.
	The IP address of the Tool is set to a value of "192.192.192.***", where *** is a number in the range 002 to 254 .	If not, set it to a value of "192.192.192.***", where ${ }^{* * *}$ is a number in the range 002 to 254 .
In cases where data communications are carried out via a hub:	The ST.No. U and L switches are both set in 0position.	If not, set both in 0-position.
	The CMU module's IP address setting is made.	If not, set it.
	The IP address setting of the Tool contains the same network address as does that of the CMU module.	If not, use the same network address in both.
The CMU module's T/M operational setting switch (T/M) is set in 0-position.		If not, set it in 0-position.
The "Ethernet" option is selected in the "Communication type" window on each system, which is displayed either at system startup time or by clicking the Change Connection button.		If not, choose the "Ethernet" option.
The 10/100BASE-T cable used is the correct type.		If not, use a straight cable when connecting the CMU module to the hub, and a cross cable when connecting it directly to the personal computer or PC.

The CMU module runs with one of the following IP addresses, depending on the given settings of the ST.No. U and L switches:
ST.No. U and L: 0-position - The set IP address, if they are both set in 0-position.
: F-position - The IP address "192.192.192.1", if they are both set in Fposition.

PS

Power supply
LQV000
LQV020
LQV100

- The POWER ON indicator (LED) does not come on.

Check if:	What to do
The power cable is connected properly.	If not, connect it properly. (For details, refer to the "S10V USER'S MANUAL BASIC MODULES (manual number SVE-1-100))."
The power cable is broken.	If true, replace the cable.
The external power supply is normal (in terms of voltage and wave form).	If not, make it normal.

- The TX and RX indicators (LEDs) do not come on normally.

Check if:	What to do
The MODU number is set correctly.	If not, set it correctly.
The set IP address of a remote node is duplicated with that of another node.	If true, set unique IP addresses for both nodes.
The IP address of the local node is set correctly.	Set the same network address for both the local and remote nodes. The recommended network address is "192.168.250".
The FL.NET module's parameters are set correctly.	If not, correct them.

FL.NET module to a given hub. If you want to

connect it directly to the destination equipment,

use a cross cable.\end{array}\right|\)| 10BASE-T connections, the cable used is the correct one. |
| :--- |
| In cases where the FL.NET module is networked by
 10BASE-5 connections, the transceiver's SQE switch is set switch if you want to connect
 correctly. |
| If a multiport transceiver or repeater is connected
 with a single-port transceiver, and you want to
 connect the FL.NET module to that single-port
 transceiver, then turn off the SQE switch. |
| The cable connector is connected loose or about to fall off
 the mating connector of the FL.NET module. |
| In cases where the FL.NET module is networked by
 mating connector and lock it. |
| 10BASE-5 connections, it is connected to the 12-V
 external power supply. |
| A terminating resistor(s) are connected to the 10BASE-5 not, connect it to the said power supply.
 coaxial cable. |
| The 10BASE-5 coaxial cable is grounded properly. |

- The LER indicator (LED) is lit.

Check if:	What to do
An FL.NET error is recorded in the error log.	If true, troubleshoot according to the instructions given under "4 ERROR LOG INFORMATION."
The FL.NET module mounted in this S10V controller is one whose parameters are previously set for use in an S10mini controller.	If true, open the parameter-setting window in the tool (FL.NET system) and add changes to the parameter settings for the mounted FL.NET module. Then, reset the controller, or turn off the power to the controller and back on again.

- Other problems

Check if:	What to do
Although a device is connected to the network to which the	If true, disconnect the device from the network.
FL.NET module is connected, it does not support the	
FL.NET module's functions.	

- Common network problems and troubleshooting
(1) Network-related problems (communication not possible) and troubleshooting

Symptom	Item to be checked	Check if:	What to do
Communication not possible	Power supply	Some equipment's main power indicator(s) are not lit.	If true, check the power supply and its voltage, and also check the power cables for any loose connections.
		The power indicator of the AUI's power supply unit is lit.	If not, check the power supply and its voltage, and also check the power cables for any loose connections.
		The output voltage of the AUI's power supply unit is equal to its prescribed voltage of 12 volts.	If not, check the power supply and its voltage, and also check the power cables for any loose connections.
		The power indicator of the hub is lit.	If not, check the power supply and its voltage, and also check the power cables for any loose connections.
		The AUI power cable is connected properly to the equipment.	If not, check the power supply and its voltage, and also check the power cables for any loose connections.
	Connection of communication cable and transceiver	The transceiver's cable is connected firmly.	If not, carry out installation work again properly according to the instructions given in Section 8.6 of the FL.NET (manual number SVE-1-101).
		A transceiver installation check device shows a problem with the transceiver.	If true, solve the problem by making necessary adjustments. If the same problem recurs, install the transceiver in a different place.
		The transceiver is electrically insulated properly.	If not, carry out installation work again properly according to the instructions given in Section 8.6 of the FL.NET (manual number SVE-1-101).
		The transceiver is connected properly at a marker on the communication cable.	If not, review the connection point according to the instructions given in Section 8.6 of the FL.NET (manual number SVE-1-101).
	Connection of transceiver cable and transceiver	The transceiver cable is connected firmly.	If not, review the installation work according to the instructions given in Section 8.6 of the FL.NET (manual number SVE-1-101) and, if necessary, apply additional tightening to the connection.
		A transceiver installation check device shows a problem with the transceiver.	If true, check the installation work according to the instruction manual on the check device.
		The transceiver is locked properly.	If not, lock it properly according to the instructions given in Section 8.6 of the FL.NET (manual number SVE-1-101).
		The transceiver's LED indicator(s) are all lit normally.	If not, check the power supply and its voltage, and also check the power cable for any loose connection.
	Connection of transceiver cable and other device	The transceiver cable is connected firmly.	If not, review the installation work according to the instructions given in Section 8.6 of the FL.NET (manual number SVE-1-101) and, if necessary, apply additional tightening to the connection.
		The device's TX (Transmit) and RX (Receive) indicators (LEDs) are lit normally.	If not, troubleshoot according to the instructions given in Chapter 7 of the FL.NET (manual number SVE-1101).
		All the media switches, such as SQE, are set correctly.	Review the settings according to the instructions given in Section 8.6 of the FL.NET (manual number SVE-1101).

(2) Network-related problems (communication unstable) and troubleshooting

Symptom	Item to be checked	Check if:	What to do
Communi- cation not possible at all, or possible but unstable	Communica- tion path	The external conductor of the coaxial cable is grounded at one place.	If not, ground it properly according to the instructions given in Section 8.6 of the FL.NET (manual number SVE-1-101).
	The shield wire of the AUI cable is grounded properly.	If not, ground it properly according to the instruction manual supplied by the cable maker.	
		There is any station not responding correctly to a given ping command.	If true, check the power supply and cable wiring of the non-responding station.
	The collision indicator is lit frequently.	If true, check the cable wiring and connectors for any incomplete connection. Make sure of the nature of the problem by using a network analyzer.	
	The number of repeaters on the path is 4 or less.	If not, review the configuration according to the instructions given in Section 8.6 of the FL.NET (manual number SVE-1-101).	

TROUBLESHOOTING

(3) IP address checking using a PC's Ping function

Whether a given FL.NET module is networked properly or its IP address is set correctly can be checked by using a special function of a Windows ${ }^{\circledR}$ machine (PC), commonly known as Ping, rather than by using a special tool, such as the FL.NET network analyzer. The description below gives an outline of check operations using the Ping function.
If an IP connection is used with the FL.NET module, check the connection by using the Ping function, as follows:
(1) Choose [Start] - [Programs] - [Accessories] - [Command Prompt], and then the command prompt appears on screen.
(2) Enter the Ping command to carry out a basic communication test between the link unit (FL.NET) and PC. The form of the Ping command entered is either of the following: Ping [IP address] or Ping [host name]
Example: Ping 192.168.250.13
It the FL.NET module under test is set up properly, the Ping command presents the following message:

```
Pinging 192.168.250. }13\mathrm{ with }32\mathrm{ bytes of data:
    Reply from 192.168.250. 13: bytes=32 time=2ms TTL=32
    Reply from 192.168.250. 13: bytes=32 time=1ms TTL=32
    Reply from 192.168.250. 13: bytes=32 time=1ms TTL=32
    Reply from JEMA 192.168.250. 13 : bytes=32 time=1ms TTL=32
```If the FL.NET module is not connected yet, the Ping command presents the following message (timeout notifications):
```

Pinging 192.168.250. }13\mathrm{ with }32\mathrm{ bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.

```

\section*{- FL.NET usage precautions}

There are some precautions that must be observed when using the FL.NET module. These precautions are listed below along with the restrictions in the table below. For information on the standard related to FL.NET communication paths, refer to the FL.NET (manual number SVE-1-101) or IEEE802.3 standard.
- Do not carry data traffic from other Ethernet networks on the FL.NET communication cable.
- Do not connect the FL.NET module to any router.
- It will do you any good to use a switching hub for the FL.NET module.
- Use of such wireless media as infrared light and radio frequency radiation may greatly deteriorate the realtimeness of data communications.
- Use of a personal computer (PC) may greatly deteriorate the realtimeness of data communications, depending on the hardware, operating system, and applications used in the PC.
- Use only the predetermined IP address. The network address used in the IP address must be consistent throughout the network (the standard network address is "192.168.250"). The node (station) number in the IP address must be in the following range:
\begin{tabular}{|c|c|}
\hline Network address & Node number \\
\hline 192.168 .250. & \(\mathbf{1}\) to 249 \\
\hline
\end{tabular}

During initialization, the specified node number is not checked for any duplication. A duplicated node number is detected only when communication is first made using that node number. For this reason, special care must be taken when specifying a node number.
- Grounding must be made properly. The grounding wire's diameter must be sufficiently large.
- Place the FL.NET module sufficiently away from any noise source. Never lay down AC power cables near the FL.NET module.
- In cases where cyclic data communication is used simultaneously with message data communication, their realtimeness may decrease depending on the volume of data being transmitted.
- Cyclic data communication area in memory, called the common memory area, need not be secured in a single continuous memory space.
- If the transceiver is provided with an SQE switch, set the SQE switch properly according to the instruction manual on that transceiver.
- The entire system's on-time data communicability is affected by the overall performance of the networked equipment. In other words, data communication is performed at the transmission speed of the lowest-speed device, as well as at the transmission speeds of all other higherspeed devices connected to the same network. Thus, addition of a single device to the network may drastically deteriorate the realtimeness of the entire system, depending on the transmission speed of the added device.
- The header of messages transmitted by message data communication is represented in bigendian format, whereas their data is represented in little-endian format. The only exception to this is the data in profile read, which is the system parameters represented in big-endian format. (The big-endian format here is a format in which the most significant bit [MSB] is first sent out.)
- The TX and RX indicators (LEDs) do not come on normally.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The MODU No. and CPL No. switches are set \\
correctly.
\end{tabular} & If not, set them correctly. \\
\hline \begin{tabular}{l}
The OD.RING/SD.LINK parameters are set \\
correctly by using the S10V OD.RING/SD.LINK \\
system.
\end{tabular} & If not, set them correctly. \\
\hline \begin{tabular}{l}
The cable is connected properly. (For example, \\
check if a cable line is broken or the cable is \\
connected to the wrong destination.)
\end{tabular} & If not, connect it properly. \\
\hline \begin{tabular}{l}
The cable connectors are inserted properly into the \\
mating connectors.
\end{tabular} & \begin{tabular}{l}
Refer to Section 3.4, "Wiring," of the \\
OD.RING (manual number SVE-1-102) \\
or SD.LINK (manual number SVE-1- \\
115), and connect the cable properly.
\end{tabular} \\
\hline \begin{tabular}{l}
The OD.RING/SD.LINK module of the \\
communication destination functions normally.
\end{tabular} & \begin{tabular}{l}
If not, start up the OD.RING/SD.LINK \\
module of the destination properly.
\end{tabular} \\
\hline The optical fiber cable is bent sharply. & If true, replace the cable. \\
\hline
\end{tabular}
- The ERR indicator (LED) is lit.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The MODU No. and CPL No. switches are set \\
correctly.
\end{tabular} & If not, set them correctly. \\
\hline \begin{tabular}{l}
The specified CPL No. is duplicated with the CPL \\
No. of some other OD.RING/SD.LINK module.
\end{tabular} & If true, specify a unique CPL No. \\
\hline \begin{tabular}{l}
An OD.RING/SD.LINK error is recorded in the \\
error log.
\end{tabular} & \begin{tabular}{l}
If true, troubleshoot according to the \\
instructions given under "4 ERROR \\
LOG INFORMATION."
\end{tabular} \\
\hline \begin{tabular}{l}
The OD.RING/SD.LINK module mounted in this \\
S10V controller is one whose parameters are \\
previously set for use in an S10mini controller.
\end{tabular} & \begin{tabular}{l}
If true, open the parameter-setting \\
window in the tool (OD.RING/SD.LINK \\
system) and add changes to the parameter \\
settings for the mounted \\
OD.RING/SD.LINK module. Then, \\
reset the controller, or turn off the power \\
to the controller and back on again.
\end{tabular} \\
\hline
\end{tabular}

LQE520
- Communication is initially not possible.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline An error message is recorded in the error log. & \begin{tabular}{l}
If true, troubleshoot according to the \\
instructions given under "4 Error \\
Log Information."
\end{tabular} \\
\hline The module number is set correctly. & \begin{tabular}{l}
If not, set the rotary switch (MODU \\
No.) at the front of the module \\
housing correctly according to the \\
instructions given under "2 NAMES \\
AND FUNCTIONS OF EACH \\
PART" in the "ET.NET (manual \\
number SVE-1-103)."
\end{tabular} \\
\hline The cable is disconnected. & \begin{tabular}{l}
If true, insert the cable connector into \\
the mating connector and lock it.
\end{tabular} \\
\hline The IP address is set correctly. & \begin{tabular}{l}
If not, set up the ET.NET module \\
correctly by using the S10V ET.NET \\
system.
\end{tabular} \\
\hline \begin{tabular}{l}
The IP address of the ET.NET module is \\
duplicated with the IP address of some other \\
module.
\end{tabular} & \begin{tabular}{l}
If true, set unique IP addresses and \\
subnet masks for the modules.
\end{tabular} \\
\hline \begin{tabular}{l}
Terminating resistors are connected to both \\
ends of the coaxial cable.
\end{tabular} & \begin{tabular}{l}
If not, connect them to both ends.
\end{tabular} \\
\hline \begin{tabular}{l}
The ERR indicator (LED) of the ET.NET \\
module is lit.
\end{tabular} & \begin{tabular}{l}
If true, push the RESET switch of the \\
LPU module to restart it. If the ERR \\
indicator is lit again, replace the \\
ET.NET module.
\end{tabular} \\
\hline \begin{tabular}{l}
In cases where the ET.NET module is \\
networked by 10BASE-5 connections, it is \\
connected to the 12-V external power supply.
\end{tabular} & \begin{tabular}{l}
If not, connect it to the said power \\
supply.
\end{tabular} \\
\hline
\end{tabular}
- Communication is not possible with the Tool (PC)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \(\begin{array}{l}\text { Where the } \\
\text { Tool and } \\
\text { ET.NET } \\
\text { module are } \\
\text { directly } \\
\text { connected } \\
\text { together by } \\
\text { using a cross } \\
\text { cable: }\end{array}\) & \(\begin{array}{l}\text { The ET.NET module's module } \\
\text { no. setting switch (MODU No.) } \\
\text { is set either in 4- or 5-position. }\end{array}\) & \(\begin{array}{l}\text { The IP address of the Tool is set } \\
\text { to a value of "192.192.192.**"", } \\
\text { where *** is a number in the } \\
\text { range 002 to 254. }\end{array}\)
\end{tabular} \(\left.\left.\begin{array}{l}\text { If are using 10BASE-T, } \\
\text { then set it in 4-position if the } \\
\text { ET.NET module is the main module, set it to a value of } \\
\text { and in 5-position if it is a submodule. }\end{array}\right] \begin{array}{l}\text { number in the range 002 to 254. a }\end{array}\right\}\)

LQE521
- The TX and RX indicators (LEDs) do not come on normally.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline The MODU No. switch is set correctly. & If not, set it correctly. \\
\hline \begin{tabular}{l}
The IP address of the SV.LINK module is duplicated \\
with the IP address of some other module.
\end{tabular} & If true, set a unique IP address for the module. \\
\hline The IP address is set correctly. & If not, set it correctly. \\
\hline The SV.LINK module's parameters are set correctly. & If not, correct them. \\
\hline \begin{tabular}{l}
In cases where the SV.LINK module is networked by \\
10BASE-T connections, the cable used is the correct \\
one.
\end{tabular} & \begin{tabular}{l}
Use a straight cable if you want to connect the \\
SV.LINK module to a given hub. If you \\
want to connect it directly to the destination \\
equipment, use a cross cable.
\end{tabular} \\
\hline \begin{tabular}{l}
In cases where the SV.LINK module is networked by \\
10BASE-5 connections, the transceiver's SQE switch is \\
set correctly.
\end{tabular} & \begin{tabular}{l}
Turn on the SQE switch if you want to \\
connect the SV.LINK module to a single-port \\
transceiver. If a multiport transceiver or \\
repeater is connected with a single-port \\
transceiver, and you want to connect the
\end{tabular} \\
\hline \begin{tabular}{l}
SV.LINK module to that single-port \\
transceiver, then turn off the SQE switch.
\end{tabular} \\
\hline \begin{tabular}{l}
The cable connector is connected loose or about to fall \\
off the mating connector of the SV.LINK module.
\end{tabular} & \begin{tabular}{l}
If true, insert the connector completely into \\
the mating connector.
\end{tabular} \\
\hline \begin{tabular}{l}
In cases where the SV.LINK module is networked by \\
10BASE-5 connections, it is connected to the 12-V \\
external power supply.
\end{tabular} & If not, connect it to the said power supply. \\
\hline
\end{tabular}
- The ERR indicator (LED) is lit.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline An SV.LINK error is recorded in the error log. & \begin{tabular}{l}
If true, troubleshoot according to the \\
instructions given under "4 ERROR LOG \\
INFORMATION."
\end{tabular} \\
\hline
\end{tabular}

\section*{- Other problems}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
A non-SV.LINK station is connected to the same \\
network to which an SV.LINK module is connected.
\end{tabular} & \begin{tabular}{l}
If true, disconnect the non-SV.LINK station \\
from the network.
\end{tabular} \\
\hline
\end{tabular}
- The TX and RX indicators (LEDs) do not come on normally.
\begin{tabular}{|c|c|c|}
\hline Symptom & Check if: & What to do \\
\hline \multirow[t]{3}{*}{Both TX and RX are OFF.} & The system or NET information is set correctly. & If not, set it correctly. \\
\hline & The MODU No. and BIT RATE switches are set correctly. & If not, set them correctly. \\
\hline & The RI/O STOP terminal on the LPU's terminal block is shorted. & If true, open-circuit the terminal. \\
\hline \multirow[t]{5}{*}{TX is flickering, but RX is OFF.} & A J.NET error is recorded in the error log. & If true, troubleshoot according to the instructions given under "4 ERROR LOG INFORMATION." \\
\hline & The cable is connected properly. & If not, connect it properly. \\
\hline & Terminating resistors are connected properly. & If not, connect them properly. \\
\hline & The slave is in an error condition. & If true, start up the slave normally. \\
\hline & The set NET information is in conflict with the slave. & If true, set NET information again in conformity with the slave's specifications. \\
\hline \multirow[t]{4}{*}{Both TX and RX are flickering.} & A J.NET error is recorded in the error log. & If true, troubleshoot according to the instructions given under "4 ERROR LOG INFORMATION." \\
\hline & The cable is connected properly. & If not, connect it properly. \\
\hline & Terminating resistors are connected properly. & If not, connect them properly. \\
\hline & The set NET information is in conflict with the slave. & If true, set NET information again in conformity with the slave's specifications. \\
\hline
\end{tabular}
- The ERR indicator (LED) is lit.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The MODU No. or BIT RATE switch is set \\
correctly.
\end{tabular} & If not, set them correctly. \\
\hline \begin{tabular}{l}
The J.NET or J.NET-INT module mounted in \\
this S10V controller is one whose parameters \\
are previously set for use in an S10mini \\
controller.
\end{tabular} & \begin{tabular}{l}
If true, open the parameter-setting \\
window in the tool (J.NET or J.NET- \\
INT SYSTEM) and add changes to the \\
parameter settings for the mounted \\
J.NET or J.NET-INT module. Then, \\
reset the controller, or turn off the \\
power to the controller and back on \\
again.
\end{tabular} \\
\hline A J.NET error is recorded in the error log. & \begin{tabular}{l}
If true, troubleshoot according to the \\
instructions given under "4 ERROR \\
LOG INFORMATION."
\end{tabular} \\
\hline
\end{tabular}
- Other problems
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Symptom } & \multicolumn{1}{c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
Outputs \\
from the DO \\
are cleared \\
erroneously.
\end{tabular} & \begin{tabular}{l}
The set value of the refresh \\
cycle (monitoring time) is too \\
small.
\end{tabular} & \begin{tabular}{l}
If true, set the refresh cycle \\
(monitoring time, which is set with the \\
J.NET SYSTEM by selecting [Edit \\
NET1 (NET2) information] - ID - \\
[Edit]) to a valve that is at least five \\
times as large as the NET1 (or NET2) \\
refresh cycle value set in the "Edit \\
system information" window. \\
Alternatively, set it to 0.
\end{tabular} \\
\hline \begin{tabular}{l}
The send/ \\
receive data \\
is not \\
updated as \\
usual.
\end{tabular} & \begin{tabular}{l}
The transfer area for NET \\
information is set up correctly.
\end{tabular} & If not, set it up correctly. \\
\hline \begin{tabular}{l}
Communica- \\
tion \\
timeouts are \\
generated \\
abnormally.
\end{tabular} & \begin{tabular}{l}
There is any AC power cable \\
laid or any other noise source \\
installed near the \\
communication cable.
\end{tabular} & \begin{tabular}{l}
If true, place the communication cable \\
away from the noise sources.
\end{tabular} \\
\hline
\end{tabular}
- The TX and RX indicators (LEDs) do not come on normally.
\begin{tabular}{|c|c|c|}
\hline Symptom & Check if: & What to do \\
\hline \multirow[t]{3}{*}{Both TX and RX are OFF.} & The system or NET information is set correctly. & If not, set it correctly. \\
\hline & The MODU No. and BIT RATE switches are set correctly. & If not, set them correctly. \\
\hline & The RI/O STOP terminal on the LPU's terminal block is shorted. & If true, open-circuit the terminal. \\
\hline \multirow[t]{5}{*}{TX is flickering, but RX is OFF.} & An IR.LINK error is recorded in the error log. & If true, troubleshoot according to the instructions given under "4 ERROR LOG INFORMATION." \\
\hline & The cable is connected properly. & If not, connect it properly. \\
\hline & Terminating resistors are connected properly. & If not, connect them properly. \\
\hline & The slave is in an error condition. & If true, start up the slave normally. \\
\hline & The set NET information is in conflict with the slave. & If true, set NET information again in conformity with the slave's specifications. \\
\hline \multirow[t]{4}{*}{Both TX and RX are flickering.} & An IR.LINK error is recorded in the error log. & If true, troubleshoot according to the instructions given under "4 ERROR LOG INFORMATION." \\
\hline & The cable is connected properly. & If not, connect it properly. \\
\hline & Terminating resistors are connected properly. & If not, connect them properly. \\
\hline & The set NET information is in conflict with the slave. & If true, set NET information again in conformity with the slave's specifications. \\
\hline
\end{tabular}
- The ERR indicator (LED) is lit.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The MODU No. or BIT RATE switch is set \\
correctly.
\end{tabular} & If not, set them correctly. \\
\hline \begin{tabular}{l}
The IR.LINK module mounted in this S10V \\
controller is one whose parameters are \\
previously set for use in an S10mini controller.
\end{tabular} & \begin{tabular}{l}
If true, open the parameter-setting \\
window in the tool (IR.LINK \\
SYSTEM) and add changes to the \\
parameter settings for the mounted \\
IR.LINK module. Then, reset the \\
controller, or turn off the power to the \\
controller and back on again.
\end{tabular} \\
\hline An IR.LINK error is recorded in the error log. & \begin{tabular}{l}
If true, troubleshoot according to the \\
instructions given under "4 ERROR \\
LOG INFORMATION."
\end{tabular} \\
\hline
\end{tabular}
- Other problems
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Symptom } & \multicolumn{1}{c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
Outputs \\
from the DO \\
are cleared \\
erroneously.
\end{tabular} & \begin{tabular}{l}
The set value of the refresh \\
cycle (monitoring time) is too \\
small.
\end{tabular} & \begin{tabular}{l}
If true, set the refresh cycle \\
(monitoring time, which is set with the \\
IR.LINK SYSTEM by selecting [Edit \\
module information] - ID - [Edit]) to \\
a valve that is at least five times as \\
large as the I/O refresh cycle value set \\
in the "Edit information" window. \\
Alternatively, set it to 0.
\end{tabular} \\
\hline \begin{tabular}{l}
The send/ \\
receive data \\
is not \\
updated as \\
usual.
\end{tabular} & \begin{tabular}{l}
The transfer area for NET \\
information is set up correctly.
\end{tabular} & If not, set it up correctly. \\
\hline \begin{tabular}{l}
Communica- \\
tion \\
timeouts are \\
generated \\
abnormally.
\end{tabular} & \begin{tabular}{l}
There is any AC power cable \\
laid or any other noise source \\
installed near the \\
communication cable.
\end{tabular} & If true, place the communication cable \\
away from the noise sources.
\end{tabular}\(|\)

Inter-CPU link
LQE550
- The LINK indicator (LED) does not come on.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The power supply module is operating \\
abnormally.
\end{tabular} & \begin{tabular}{l}
If true, follow the troubleshooting map \\
for the power supply module in order \\
to check out the said module.
\end{tabular} \\
\hline The MAIN/SUB setting switch is set correctly. & \begin{tabular}{l}
If not, set it correctly. For details, \\
refer to the description under "4 \\
OPERATION" in the "CPU LINK \\
(manual number SVE-1-109)."
\end{tabular} \\
\hline \begin{tabular}{l}
The PCs edition is set correctly by using the \\
CPU Link system.
\end{tabular} & \begin{tabular}{l}
If true, follow the troubleshooting map \\
for the LPU module in order to check \\
out the said module.
\end{tabular} \\
\hline The LPU module is operating abnormally. \\
\hline \begin{tabular}{l}
The voltage from the power supply module -- a \\
measurement between the voltage check \\
terminals -- is abnormal.
\end{tabular} & \begin{tabular}{l}
If true, replace the power supply \\
module.
\end{tabular} \\
\hline \begin{tabular}{l}
The LPU module's LADDER switch is in \\
STOP position.
\end{tabular} & \begin{tabular}{l}
If true, set it in RUN position.
\end{tabular} \\
\hline \begin{tabular}{l}
The LPU module's SIMU indicator (LED) is \\
ON.
\end{tabular} & \begin{tabular}{l}
If true, change the LADDER MODE \\
to "NORM" with the "S10V BASE \\
SYSTEM."
\end{tabular} \\
\hline \begin{tabular}{l}
The "Receive only" option is checked in the \\
CPU Link system's "PCs edition" window.
\end{tabular} & \begin{tabular}{l}
If true, deselect the option and set up a \\
send area.
\end{tabular} \\
\hline
\end{tabular}
- The TX and RX indicators (LEDs) do not come on normally.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline The MODU No. switch is set correctly. & If not, set it correctly. \\
\hline \begin{tabular}{l}
The RS-232C or RS-422 module's parameters \\
are set correctly.
\end{tabular} & If not, set them correctly. \\
\hline The cable is connected correctly. & \begin{tabular}{l}
Check the cable connections and, if a \\
connection error is found, correct it.
\end{tabular} \\
\hline \begin{tabular}{l}
The cable connector is connected loose or \\
about to fall off the mating connector of the \\
RS-232C or RS-422 module.
\end{tabular} & \begin{tabular}{l}
If true, insert the connector completely \\
into the mating connector.
\end{tabular} \\
\hline
\end{tabular}
- The ERR indicator (LED) is lit.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
An RS-232C or RS-422 error is recorded in \\
the error log.
\end{tabular} & \begin{tabular}{l}
If true, troubleshoot according to the \\
instructions given under "4 ERROR \\
LOG INFORMATION."
\end{tabular} \\
\hline
\end{tabular}
- The MNS indicators (LEDs) do not come on normally.
\begin{tabular}{|c|c|c|}
\hline Symptom & Check if: & What to do \\
\hline \multirow[t]{4}{*}{The green LED is flickering, but the red LED is OFF.} & The cable is connected properly or free from breakage. & If not, connect it properly. \\
\hline & Terminating resistors are connected properly. & If not, connect them properly. \\
\hline & The slave is registered properly. & If not, register it properly. \\
\hline & The slave is started up normally. & If not, start it up normally. \\
\hline \multirow[t]{4}{*}{The green LED is OFF but the red LED is lit.} & The D.NET module's NA switch setting is duplicated with some other node's. & Set them uniquely. \\
\hline & The NA, DR, and MODU No. switches are all set correctly. & If not, set them correctly. \\
\hline & A D.NET error is recorded in the error log. & If true, troubleshoot according to the instructions given under "4 ERROR LOG INFORMATION." \\
\hline & The D.NET module mounted in this S 10 V controller is one whose parameters are previously set for use in an S10mini controller. & If true, open the parameter-setting window in the tool (D.NET SYSTEM) and add changes to the parameter settings for the mounted D.NET module. Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline \multirow[t]{3}{*}{The green LED is OFF, but the red LED is flickering.} & The cable is connected properly. & If not, connect it properly. \\
\hline & Terminating resistors are connected properly. & If not, connect them properly. \\
\hline & The connector is connected loose. & Insert the connector completely into the mating connector. \\
\hline \multirow[t]{2}{*}{Both the green and red LEDs are OFF.} & A D.NET error is recorded in the error log. & If true, troubleshoot according to the instructions given under "4 ERROR LOG INFORMATION." \\
\hline & The NA, DR, and MODU No. switches are all set correctly. & If not, set them correctly. \\
\hline
\end{tabular}

\section*{- Other problems}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The communication (external) power supply is connected \\
properly.
\end{tabular} & \begin{tabular}{l}
If not, connect it properly. For details, refer to the \\
description under "3 MOUNTING AND \\
WIRING" in the D.NET (manual number SVE-1- \\
l06). Although the model LQE570 module that \\
self-feeds its own communication power source \\
needs no external power supply, connection of the \\
power supply to it causes no problem because the \\
power wire is well isolated (both electrically and \\
electro-magnetically) from the internal component \\
parts.
\end{tabular} \\
\hline \begin{tabular}{l}
In cases where the D.NET module is connected with a DI/O \\
slave device from some other manufacturer, a setting is made to \\
use the bit reversal (endian conversion) mode.
\end{tabular} & If not, make such a setting. \\
\hline
\end{tabular}
- The TX and RX indicators (LEDs) do not come on normally.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline The MODU No. switch is set correctly. & If not, set it correctly. \\
\hline \begin{tabular}{l}
The IP address of the EQ.LINK module is \\
duplicated with some other node's.
\end{tabular} & If true, set them uniquely. \\
\hline The IP address is set correctly. & \begin{tabular}{l}
Set the same network address for both \\
the local and remote nodes. The \\
recommended network address is \\
"192.168.250".
\end{tabular} \\
\hline \begin{tabular}{l}
The EQ.LINK module's parameters are set \\
correctly.
\end{tabular} & If not, set them correctly. \\
\hline \begin{tabular}{l}
The cable used by 10BASE-T connections is \\
the right one.
\end{tabular} & \begin{tabular}{l}
If you want to connect the EQ.LINK \\
module directly to the destination \\
equipment, use a cross cable.
\end{tabular} \\
\hline \begin{tabular}{l}
The cable connector is connected loose or \\
about to fall off the mating connector of the \\
EQ.LINK module.
\end{tabular} & \begin{tabular}{l}
If true, insert the connector completely \\
into the mating connector and lock it.
\end{tabular} \\
\hline
\end{tabular}
- The LER indicator (LED) is lit.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline An EQ.LINK error is recorded in the error log. & \begin{tabular}{l}
If true, troubleshoot according to the \\
instructions given under "4 ERROR \\
LOG INFORMATION."
\end{tabular} \\
\hline \begin{tabular}{l}
The EQ.LINK module is mounted in a non- \\
S10V controller.
\end{tabular} & If true, mount it in an S10V controller. \\
\hline
\end{tabular}
- Other problems
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline An SYS SW (model LQZ700) module is & If not, install it properly in the same \\
installed in the S10V controller. & S10V controller in which the \\
& EQ.LINK module is installed. \\
\hline
\end{tabular}

\section*{2 TROUBLESHOOTING}
- Common network problems and troubleshooting
(1) Network-related problems (communication not possible) and troubleshooting
\begin{tabular}{|l|l|l|l|}
\hline Symptom & \begin{tabular}{c}
Item to be \\
checked
\end{tabular} & \multicolumn{1}{c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
Communi- \\
cation not \\
possible
\end{tabular} & \begin{tabular}{l}
Power \\
supply
\end{tabular} & \begin{tabular}{l}
Some equipment's main \\
power indicator(s) are not lit.
\end{tabular} & \begin{tabular}{l}
If true, check the power supply and its \\
voltage, and also check the power \\
cables for any loose connections.
\end{tabular} \\
\hline
\end{tabular}
(2) Network-related problems (communication unstable) and troubleshooting
\begin{tabular}{|c|c|c|c|}
\hline Symptom & Item to be checked & Check if: & What to do \\
\hline \multirow[t]{5}{*}{Communication not possible at all, or possible but unstable} & \multirow[t]{5}{*}{\begin{tabular}{l}
Communi- \\
cation \\
station's \\
equipment \\
settings
\end{tabular}} & IP addresses are set correctly in the network. & Check the set IP addresses with the support tool and/or network analyzer. \\
\hline & & The station number of the station's equipment is set correctly. & Check the set station number with the support tool and/or network analyzer. \\
\hline & & The equipment's parameters are set correctly. & Check the set parameters with the support tool. \\
\hline & & The TX (Transmit) indicator is lit continuously or intermittently. & If not, check the equipment settings. \\
\hline & & The LK (Link) indicator is lit continuously. & If not, check the parameter settings on the equipment side. \\
\hline
\end{tabular}

\section*{- EQ.LINK usage precautions}

There are some precautions that must be observed when using the EQ.LINK module. These precautions are listed below. For information on the standard related to EQ.LINK communication paths, refer to the EQ.LINK (manual number SVE-1-124) or IEEE802.3 standard.
- Do not carry data traffic from other Ethernet networks on the EQ.LINK communication cable.
- Do not connect the EQ.LINK module to any router.
- Use of a switching hub for the EQ.LINK module does not produce the desired effect. (Use a 10BASE-T cross cable to connect the EQ.LINK module directly to the destination equipment.)
- Use of such wireless media as infrared light and radio frequency radiation may greatly deteriorate the realtimeness of data communications.
- Use of a personal computer (PC) may greatly deteriorate the realtimeness of data communications, depending on the hardware, operating system, and applications used in the PC.
- During initialization, a specified node number is not checked for any duplication. A duplicated node number is detected only when communication is first made using that node number. For this reason, special care must be taken when specifying a node number.
- Grounding must be made properly. The grounding wire's diameter must be sufficiently large.
- Place the EQ.LINK module sufficiently away from any noise source. Never lay down AC power cables near the EQ.LINK module.
- The header of messages transmitted by message data communication is represented in bigendian format, whereas their data is represented in little-endian format. The only exception to this is the data in profile read, which is the system parameters represented in big-endian format. (The big-endian format here is a format in which the most significant bit [MSB] is first sent out.)

\section*{ET.NET}

LQE720
- Communication is initially not possible.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline An error message is recorded in the error log. & \begin{tabular}{l}
If true, troubleshoot according to the \\
instructions given under "4 ERROR \\
LOG INFORMATION."
\end{tabular} \\
\hline The module number is set correctly. & \begin{tabular}{l}
If not, set the rotary switch (MODU \\
No.) at the front of the module \\
housing correctly according to the \\
instructions given under "2 NAMES \\
AND FUNCTIONS OF EACH \\
PART" in the ET.NET (manual \\
number SVE-1-103).
\end{tabular} \\
\hline The cable is disconnected. & \begin{tabular}{l}
If true, insert the cable connector into \\
the mating connector and lock it.
\end{tabular} \\
\hline The IP address is set correctly. & \begin{tabular}{l}
If not, set up the ET.NET module \\
correctly by using the S10V ET.NET \\
system.
\end{tabular} \\
\hline \begin{tabular}{l}
The IP address of the ET.NET module is \\
duplicated with the IP address of some other \\
module.
\end{tabular} & \begin{tabular}{l}
If true, set unique IP addresses and \\
subnet masks for the modules.
\end{tabular} \\
\hline \begin{tabular}{l}
The ERR indicator (LED) of the ET.NET \\
module is lit.
\end{tabular} & \begin{tabular}{l}
If true, push the RESET switch of the \\
LPU module to restart it. If the ERR \\
indicator is lit again, replace the
\end{tabular} \\
ET.NET module.
\end{tabular}
- Communication is not possible with the Tool (PC)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Check if:} & What to do \\
\hline \multirow[t]{2}{*}{Where the Tool and ET.NET module are directly connected together by using a cross cable:} & The ET.NET module's ST No. setting switches are set to a value of /FF. & If not, set them to /FF. \\
\hline & The IP address of the Tool is set to a value of "192.192.192.***", where \(* * *\) is a number in the range 002 to 254 . & If not, set it to a value of "192.192.192.***", where \({ }^{* * *}\) is a number in the range 002 to 254 . \\
\hline \multirow[t]{3}{*}{Where communication is performed via a hub:} & The ET.NET module has its IP address set. & If not, set it. \\
\hline & The IP addresses of the Tool and ET.NET module contain the same network address. & If not, specify the same network address in the two IP addresses. \\
\hline & The MAIN/SUB setting switch is set correctly. & If not, set it in 0-position if the ET-NET module is the main module, and in 1position if it is a submodule. \\
\hline \multicolumn{2}{|l|}{The "Ethernet" option is selected in the "Communication type" window on each system, which is displayed either at system startup time or by clicking the Change Connection button.} & If not, choose the "Ethernet" option. \\
\hline \multicolumn{2}{|l|}{The cable used is the correct type.} & If not, use a straight cable when connecting the ET.NET module to the hub, and a cross cable when connecting it directly to the PC. \\
\hline
\end{tabular}
- Data transmission is not possible from ladder applications
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The LPU module used is compatible with the \\
model LQE720 module.
\end{tabular} & \begin{tabular}{l}
Ethernet communication from a ladder \\
application program using the model \\
LQE720 module requires an LPU module
\end{tabular} \\
& \begin{tabular}{l}
of Rev.H (Ver-Rev of 0002-0002) or \\
later.
\end{tabular} \\
\hline
\end{tabular}
- Data transmission is not possible from HI-FLOW applications
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The CMU module used is compatible with the \\
model LQE720 module.
\end{tabular} & \begin{tabular}{l}
Ethernet communication from a HI- \\
FLOW application program using the \\
model LQE720 module requires an CMU \\
module of Rev.E (Ver-Rev of 0004-0000) \\
or later.
\end{tabular} \\
\hline
\end{tabular}
- The RI/O indicator (LED) does not come on.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Check if:} & What to do \\
\hline \multicolumn{2}{|l|}{The LPU module's SIMU indicator (LED) is lit.} & If true, change the LADDER MODE to "NORM" in the S10V BASE SYSTEM. \\
\hline \multicolumn{2}{|l|}{The LPU module is operating abnormally.} & If true, follow the troubleshooting map for the LPU module in order to check out the said module. \\
\hline \multicolumn{2}{|l|}{The station number is set correctly.} & If not, set it correctly. (For details, refer to the "S10V USER'S MANUAL BASIC MODULES (manual number SVE-1-100))." \\
\hline \multirow[t]{4}{*}{The remote I/O cable is abnormal.} & Line breakage & \multirow[t]{2}{*}{Replace the cable.} \\
\hline & Nonconforming wiring length & \\
\hline & Incomplete connection & Connect it completely. \\
\hline & Terminating resistor(s) missing & Connect them properly. \\
\hline \multicolumn{2}{|l|}{The set number of remote I/O transfer points is smaller than the number of such points actually used. (To make this check, select [Utility] - [PCs edition] - [Change capacity] in the S10V LADDER CHART SYSTEM.)} & Change the set number in consideration of the number of remote I/O points actually used. \\
\hline \multicolumn{2}{|l|}{The I/O unit's power supply module is abnormal.} & If true, follow the troubleshooting map for the power supply module in order to check out the said module. \\
\hline \multicolumn{2}{|l|}{The power supply and station (RI/O) modules in the I/O unit are mounted properly.} & If not, mount them properly. \\
\hline \multicolumn{2}{|l|}{The voltage from the I/O unit's power supply module is abnormal. (Check the voltage.)} & If true, replace the I/O unit's power supply module. \\
\hline \multicolumn{2}{|l|}{The RI/O STOP input that has its terminal provided on the LPU module's terminal block remains ON.} & Turn it off. \\
\hline
\end{tabular}
- The J-NET indicator (LED) does not come on normally.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The BIT RATE and ST No. switches are set \\
correctly.
\end{tabular} & If not, set them correctly. \\
\hline \begin{tabular}{l}
The J.Station module's terminal block has its \\
terminals wired correctly.
\end{tabular} & If not, wire the terminals correctly. \\
\hline The master side is started up normally. & \begin{tabular}{l}
If not, start it up normally. If the \\
master is a J.NET module, see the \\
error freeze information for the J.NET \\
module.
\end{tabular} \\
\hline \begin{tabular}{l}
The master-side settings made are in conflict \\
with the J.Station module.
\end{tabular} & \begin{tabular}{l}
If true, make the settings again in \\
conformity with the J.Station \\
module's specifications.
\end{tabular} \\
\hline The cable is wired correctly. & If not, wire it correctly. \\
\hline \begin{tabular}{l}
The cable's wire(s) are connected loose or \\
about to come off the terminals.
\end{tabular} & \begin{tabular}{l}
If true, connect the cable wire(s) \\
firmly to the terminals on the terminal \\
block.
\end{tabular} \\
\hline Terminating resistors are connected properly. & If not, connect them properly. \\
\hline
\end{tabular}
- The ERR indicator (LED) is lit.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The BIT RATE and ST No. switches are set \\
correctly.
\end{tabular} & If not, set them correctly. \\
\hline
\end{tabular}
- The TX/RX indicator does not come on normally.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The BIT RATE and ST No. switches are set \\
correctly.
\end{tabular} & If not, set them correctly. \\
\hline \begin{tabular}{l}
The IR.Station module's terminal block has its \\
terminals wired correctly.
\end{tabular} & If not, wire the terminals correctly. \\
\hline The IR.LINK module is started up normally. & \begin{tabular}{l}
If not, start it up normally. If an \\
IR.LINK error is reported, see the \\
error freeze information for the \\
IR.LINK module.
\end{tabular} \\
\hline \begin{tabular}{l}
The IR.LINK module settings made are in \\
conflict with the IR.Station module.
\end{tabular} & \begin{tabular}{l}
If true, make the settings again in \\
conformity with the IR.Station \\
module's specifications.
\end{tabular} \\
\hline The cable is wired correctly. & If not, wire it correctly. \\
\hline \begin{tabular}{l}
The cable's wire(s) are connected loose or \\
about to come off the terminals.
\end{tabular} & \begin{tabular}{l}
If true, connect the cable wire(s) \\
firmly to the terminals on the terminal \\
block.
\end{tabular} \\
\hline Terminating resistors are connected properly. & If not, connect them properly. \\
\hline
\end{tabular}
- The ERR indicator (LED) is lit.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The BIT RATE and ST No. switches are set \\
correctly.
\end{tabular} & If not, set them correctly. \\
\hline
\end{tabular}
- The MNS indicators (LEDs) do not come on normally.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Symptom } & \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The green \\
LED is \\
flickering, but \\
the red LED is \\
OFF.
\end{tabular} & \begin{tabular}{l}
The cable is connected properly (or \\
free from wire breakage).
\end{tabular} & \begin{tabular}{l}
If not, connect it properly. \\
properly.
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l}
A registration of the D.Station module \\
is missing on the master side.
\end{tabular} & If true, register it properly. \\
\cline { 2 - 3 } & \begin{tabular}{l}
A registration of the D.Station on the \\
master side contains an error.
\end{tabular} & \begin{tabular}{l}
If true, register it again in conformity \\
with the D.Station module's \\
specifications.
\end{tabular} \\
\cline { 2 - 3 } & The master side is started up normally. & \begin{tabular}{l}
If not, start it up normally. If the master \\
is a D.NET module, see the error freeze \\
information for the D.NET module.
\end{tabular} \\
\hline \begin{tabular}{l}
The green \\
LED is OFF \\
but the red \\
LED is lit.
\end{tabular} & \begin{tabular}{l}
The D.Station module's NA switch \\
setting is duplicated with some other \\
node's.
\end{tabular} & Set them uniquely. \\
\cline { 2 - 3 } & \begin{tabular}{l}
The NA, SLOT, FUNC1, and FUNC2 \\
switches are all set correctly.
\end{tabular} & If not, set them correctly. \\
\hline \begin{tabular}{l}
The green \\
LED is OFF, \\
but the red \\
LED is \\
flickering.
\end{tabular} & \begin{tabular}{l}
The cable is connected properly.
\end{tabular} & \begin{tabular}{l}
If not, connect it properly. \\
\cline { 2 - 3 } \\
Terminating resistors are connected \\
properly.
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l}
The cable connector is connected \\
loose or about to fall off the mating \\
connector of the D.Station module.
\end{tabular} & \begin{tabular}{l}
If not, connect them properly. \\
mating connector.
\end{tabular} \\
\hline \begin{tabular}{l}
Both the green \\
and red LEDs \\
are OFF.
\end{tabular} & \begin{tabular}{l}
The NA, SLOT, FUNC1, and FUNC2 \\
switches are all set correctly.
\end{tabular} & If not, set them correctly. \\
\cline { 2 - 3 } & \begin{tabular}{l}
The D.Station module's NA switch \\
setting is duplicated with some other \\
node's.
\end{tabular} & Set them uniquely. \\
\hline
\end{tabular}

\section*{- Other problems}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
In cases where the D.Station module is connected \\
with a DeviceNet master from some other \\
manufacturer, an external power supply for that \\
master is connected to the network.
\end{tabular} & \begin{tabular}{l}
If not, connect one to the network. An \\
external power supply must always be \\
connected to the network in cases where the \\
D.Station module is connected with a \\
DeviceNet master from some other \\
manufacturer.
\end{tabular} \\
\hline
\end{tabular}

\section*{A.INPUT}

Analog input
LQA0**
LQA1**
LQA2**
- Input data cannot be input normally.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The power supply module is operating \\
abnormally.
\end{tabular} & \begin{tabular}{l}
If true, follow the troubleshooting map \\
for the power supply module in order \\
to check out the said module.
\end{tabular} \\
\hline \begin{tabular}{l}
The station in which the A.INPUT module is \\
installed is operating abnormally.
\end{tabular} & \begin{tabular}{l}
If true, follow the troubleshooting map \\
for the station module in order to \\
check out the said module.
\end{tabular} \\
\hline The analog input module is mounted properly. & If not, mount it properly. \\
\hline \begin{tabular}{l}
The right terminal block is attached to the \\
A.INPUT module.
\end{tabular} & If not, attach the right one to it. \\
\hline The input cable is wired correctly. & If not, wire it correctly. \\
\hline The analog input module is grounded properly. & If not, ground it properly. \\
\hline The allowable input data range is exceeded. & \begin{tabular}{l}
If true, use the analog input module \\
within the proper input data range.
\end{tabular} \\
\hline \begin{tabular}{l}
Where mode 2 is used by setting, the analog \\
input module is registered in the LPU module.
\end{tabular} & If not, register it with the Tool. \\
\hline The RANGE switch is set correctly. & If not, set it correctly. \\
\hline
\end{tabular}
- Input data cannot be input normally.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The power supply module is operating \\
abnormally.
\end{tabular} & \begin{tabular}{l}
If true, follow the troubleshooting map \\
for the power supply module in order \\
to check out the said module.
\end{tabular} \\
\hline \begin{tabular}{l}
The station in which the A.INPUT module is \\
installed is operating abnormally.
\end{tabular} & \begin{tabular}{l}
If true, follow the troubleshooting map \\
for the station module in order to \\
check out the said module. If the \\
scan-type analog input module used is \\
of model LQA301 or LQA310, use an \\
RI/O station module. If it is of model \\
LQA801 or LQA810, use an RI/O \\
station or J.Station module.
\end{tabular} \\
\hline \begin{tabular}{l}
The scan-type analog input module is mounted \\
properly.
\end{tabular} & \begin{tabular}{l}
If not, mount it properly. For details, \\
refer to the description under "4
\end{tabular} \\
HANDLING" in the "I/O MODULES \\
(manual number SME-1-114)."
\end{tabular}\(|\)\begin{tabular}{ll}
If not, attach the right one to it. \\
\hline \begin{tabular}{l}
The right terminal block is attached to the
\end{tabular} \\
A.INPUT module. & If not, wire it correctly. \\
\hline The input cable is wired correctly. & If not, ground it properly. \\
\hline \begin{tabular}{l}
The scan-type analog input module is \\
grounded properly.
\end{tabular} & \begin{tabular}{l}
If true, use the scan-type analog input \\
module within the proper input data \\
range. For details, refer to the \\
description under "4 HANDLING", \\
in the "I/O MODULES (manual \\
number SME-1-114)." The allocated \\
data area (EW area) can be set up in \\
the S10V LADDER CHART \\
SYSTEM by selecting [Utility] - [PCs \\
edition] - [Analog counter].
\end{tabular} \\
\hline The allowable input data range is exceeded.
\end{tabular}

\section*{A.OUTPUT}

Analog output
LQA5**
LQA6**
- The output voltage and current are abnormal.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The power supply module is operating \\
abnormally.
\end{tabular} & \begin{tabular}{l}
If true, follow the troubleshooting map \\
for the power supply module in order \\
to check out the said module.
\end{tabular} \\
\hline \begin{tabular}{l}
The station in which the A.OUTPUT module \\
is installed is operating abnormally.
\end{tabular} & \begin{tabular}{l}
If true, follow the troubleshooting map \\
for the station module in order to \\
check out the said module.
\end{tabular} \\
\hline \begin{tabular}{l}
The analog output module is mounted \\
properly.
\end{tabular} & If not, mount it properly. \\
\hline \begin{tabular}{l}
The right terminal block is attached to the \\
A.OUTPUT module.
\end{tabular} & If not, attach the right one to it. \\
\hline The output cable is wired correctly. & If not, wire it correctly. \\
\hline \begin{tabular}{l}
The analog output module is grounded \\
properly.
\end{tabular} & If not, ground it properly. \\
\hline The channel used for output is the wrong one. & \begin{tabular}{l}
If true, use the correct channel for data \\
output.
\end{tabular} \\
\hline \begin{tabular}{l}
Where mode 2 is used by setting, the analog \\
output module is registered in the LPU \\
module.
\end{tabular} & If not, register it with the Tool. \\
\hline The RANGE switch is set correctly. & If not, set it correctly. \\
\hline
\end{tabular}

\section*{D.INPUT}

Digital input
LQX***
- None of the input points is turned on.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Check if:} & What to do \\
\hline \multirow[t]{7}{*}{The operation status indicators (LEDs) are all ON or OFF.} & \multirow{6}{*}{OFF} & The right terminal block is attached to the D.INPUT module. & If not, attach the right one to it. \\
\hline & & The fixing screws of the digital input module are loose. & If true, apply additional tightening to the fixing screws. \\
\hline & & An external input power source is connected to the digital input module. & If not, connect one to it. \\
\hline & & The external power supply voltage is too low. & If true, raise it. \\
\hline & & The internal power supply voltage -- a measurement between the voltage check terminals on the power supply module -- is too low. & If true, replace the power supply module. \\
\hline & & The external wiring is correct. & If not, correct it. \\
\hline & ON & The station module is operating abnormally. & If true, follow the troubleshooting map for the station module in order to check out the said module. \\
\hline
\end{tabular}
- Only a particular input point is not turned on.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Check if:} & What to do \\
\hline \multirow[t]{5}{*}{The operation status indicator (LED) is ON or OFF.} & & The attached terminal block or inserted connector is getting loose. & If true, secure it in place. \\
\hline & OFF & The terminal block or connector is broken. & If true, replace it. \\
\hline & & The ON-condition duration of the external input is too short. & If true, adjust the related component part of the external equipment. \\
\hline & & Part of the wiring is loose or broken. & If true, correct the wiring. \\
\hline & ON & The I/O address used in a program is in error. & If true, correct the I/O address. \\
\hline
\end{tabular}
- None of the input points is turned off.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline The operation status indicator (LED) is OFF. & If true, replace the module. \\
\hline The operation status indicator (LED) is ON. & \begin{tabular}{l}
If true, check if the external wiring is \\
correct. If it is correct, replace the \\
module.
\end{tabular} \\
\hline
\end{tabular}
- The input is turned on of off irregularly.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline The external input power voltage is too low. & If true, raise it. \\
\hline Adequate noise reduction measures are taken. & If not: \\
& \begin{tabular}{l}
• Use surge absorbers. \\
• Lay the input cable away from any \\
noise source. \\
For more information, refer to the \\
description under "4 HANDLING" \\
in the "S10mini HARDWARE \\
MANUAL, I/O MODULES (manual \\
number SME-1-114)."
\end{tabular} \\
\hline
\end{tabular}
- Only a particular input point is not turned off.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The external equipment used is operating \\
abnormally.
\end{tabular} & \begin{tabular}{l}
If true, adjust the related component \\
part of the external equipment.
\end{tabular} \\
\hline
\end{tabular}

\section*{D.OUTPUT}

Digital output
LQY***
- None of the load points is turned on.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline The power supply module is operating abnormally. & \begin{tabular}{l}
If true, follow the troubleshooting map for the \\
power supply module in order to check out the \\
said module.
\end{tabular} \\
\hline The digital output module is mounted properly. & If not, mount it properly. \\
\hline \begin{tabular}{l}
The operation \\
status indicator \\
(LED) is ON or \\
OFF.
\end{tabular} & \begin{tabular}{l}
The station module is \\
malfunctioning.
\end{tabular} & \begin{tabular}{l}
If true, follow the troubleshooting map for the \\
station module in order to check out the said \\
module.
\end{tabular} \\
\hline
\end{tabular}
- Only a particular load point is not turned on.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The operation \\
status indicator \\
(LED) is ON or \\
OFF.
\end{tabular} & \multirow{3}{*}{\begin{tabular}{l}
OFF
\end{tabular}} & \begin{tabular}{l}
The ON-condition duration \\
in a program is too short.
\end{tabular} & Review the program. \\
\cline { 3 - 3 } & \begin{tabular}{l}
The I/O address used in a \\
program is in error.
\end{tabular} & \multirow{2}{*}{\begin{tabular}{l}
The external load's wiring is \\
broken.
\end{tabular}} & Check the wiring. \\
\hline & \begin{tabular}{l}
The attached terminal block \\
or inserted connector is \\
getting loose.
\end{tabular} & If true, secure it in place. \\
\cline { 3 - 4 } & \begin{tabular}{l}
The terminal block or \\
connector is broken.
\end{tabular} & If true, replace it. \\
\cline { 3 - 4 } & \begin{tabular}{l}
The external wiring is \\
correct.
\end{tabular} & If not, correct it. \\
\hline & \begin{tabular}{l}
The module is damaged due \\
to an overcurrent.
\end{tabular} & \begin{tabular}{l}
Take a measure to prevent overcurrent from \\
flowing in the load, and replace the module.
\end{tabular} \\
\hline
\end{tabular}
- None of the load points is turned off.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline The station module is operating abnormally. & \begin{tabular}{l}
If true, follow the troubleshooting map \\
for the station module in order to \\
check out the said module.
\end{tabular} \\
\hline The LPU module is operating abnormally. & \begin{tabular}{l}
If true, follow the troubleshooting map \\
for the LPU module in order to check \\
out the said module.
\end{tabular} \\
\hline
\end{tabular}
- Only a particular load point is not turned off.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The operation \\
status indicator \\
(LED) is ON or \\
OFF.
\end{tabular} & \begin{tabular}{l}
The problem is a reset \\
failure due to leakage \\
Current or saturation \\
voltage.
\end{tabular} & \begin{tabular}{l}
If true, add a bleeder resistor to the \\
load.
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l}
The module is damaged \\
due to an overcurrent.
\end{tabular} & \begin{tabular}{l}
Take a measure to prevent overcurrent \\
from flowing to the load, and replace \\
the module.
\end{tabular} \\
\cline { 2 - 4 } & & \begin{tabular}{l}
The station module is \\
malfunctioning.
\end{tabular} & \begin{tabular}{l}
If true, follow the troubleshooting \\
map for the station module in order to \\
check out the said module.
\end{tabular} \\
\cline { 3 - 4 } & \begin{tabular}{l}
The LPU module is \\
malfunctioning.
\end{tabular} & \begin{tabular}{l}
If true, follow the troubleshooting \\
map for the LPU module in order to \\
check out the said module.
\end{tabular} \\
\hline
\end{tabular}
- The load is turned on of off irregularly.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Check if:} & What to do \\
\hline \multicolumn{2}{|l|}{The external load power voltage is too low.} & If true, raise it. \\
\hline \multicolumn{2}{|l|}{Adequate noise reduction measures are taken.} & \begin{tabular}{l}
- Use surge absorbers. \\
- Take measures to protect the laid cables from any noise source. \\
For more information, refer to the description under "4 HANDLING" in the "S10mini HARDWARE MANUAL, I/O MODULES (manual number SME-1-114)."
\end{tabular} \\
\hline \multirow[t]{4}{*}{The remote I/O cable is abnormal.} & Line breakage & Replace the cable \\
\hline & Nonconforming wiring length & \\
\hline & Incomplete connection & Connect it completely. \\
\hline & Terminating resistor(s) missing & Connect them properly. \\
\hline \multicolumn{2}{|l|}{The program is error-free.} & If not, correct the program. \\
\hline
\end{tabular}

\title{
D.IN/OUT \\ Digital input/output \\ LQZ***
}
- Input or output is malfunctioning.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
The allocation address setting switch (SW3) is \\
set correctly.
\end{tabular} & If not, set it correctly. \\
\hline Input is malfunctioning. & \begin{tabular}{l}
If true, follow the troubleshooting map \\
for the digital input (D.INPUT) \\
module in order to check out the said \\
module.
\end{tabular} \\
\hline Output is malfunctioning. & \begin{tabular}{l}
If true, follow the troubleshooting map \\
for the digital output (D.OUTPUT) \\
module in order to check out the said \\
module.
\end{tabular} \\
\hline
\end{tabular}

Pulse counter
LQC000
- The counter does not count pulses.
\begin{tabular}{|c|c|}
\hline Check if: & What to do \\
\hline The power supply module is operating abnormally. & If true, follow the troubleshooting map for the power supply module in order to check out the said module. \\
\hline The station is operating abnormally. & If true, follow the troubleshooting map for the station module in order to check out the said module. \\
\hline The pulse counter module is mounted properly. & If not, mount it properly. \\
\hline An external stop pulse is input. & Clear it. \\
\hline The user program coded assumes that a "stop counting" signal continuously comes in. & Correct the coding. \\
\hline \begin{tabular}{l}
The Up/Down direction indicator (LED) is blinking during the input of pulses. \\
Not The wiring for input pulses is blinking incorrect.
\end{tabular} & If true, correct the wiring. For details, refer to the "I/O MODULES (manual number SME-1-114)." \\
\hline An external input power source is connected to the counter module. & If not, connect one to it. \\
\hline The external power supply voltage is too low. & If true, raise it. \\
\hline The input pulses received do not meet the following requirements:
\[
\binom{20 \mathrm{~K} \text { PPS }}{50 \% \text { duty cycle }}
\] & Feed input pulses meeting the stated requirements. \\
\hline The pulse counter is defined in the LPU. & \begin{tabular}{l}
If not, define it with the Tool. (To accomplish this, select [Utility] [PCs edition] - [Analog counter] in the S10V LADDER CHART \\
SYSTEM.) For information on the set values, refer to the "I/O MODULES (manual number SME-1114)."
\end{tabular} \\
\hline
\end{tabular}
- The count value is not correct.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline The input pulses received exceeds 20K PPS. & \begin{tabular}{l}
If true, reduce them to 20K PPS or \\
less.
\end{tabular} \\
\hline Extra pulses are received due to noise. & If true, take a noise reduction measure. \\
\hline Relay-generated pulses are received. & \begin{tabular}{l}
If true, receive only pulses generated \\
by transistor or other semiconductor \\
devices.
\end{tabular} \\
\hline
\end{tabular}
- No external comparison output is produced.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline \begin{tabular}{l}
An external power source is connected to the \\
counter module.
\end{tabular} & If not, connect one to it. \\
\hline The external power supply voltage is too low. & If true, raise it. \\
\hline The external wiring is correct. & If not, correct it. \\
\hline
\end{tabular}

\section*{Tool (personal computer) connection}
- No connection can be established with the PCs (via RS-232C)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Check if: } & \multicolumn{1}{c|}{ What to do } \\
\hline The cable connector is screwed tightly. & If not, screw it tightly. \\
\hline Any connector pins are bent. & If true, replace the cable. \\
\hline \begin{tabular}{l}
The connection between the cable and \\
connector is loose.
\end{tabular} & \\
& \\
\cline { 1 - 1 } \begin{tabular}{l}
A cable not conforming to the standard cable \\
specifications is used.
\end{tabular} & \\
\hline
\end{tabular}
- No connection can be established with the PCs (via Ethernet [ET.NET module])

For details, see the table under " Communication is not possible with the Tool (PC)" in the ET.NET section given earlier under " 2 TROUBLESHOOTING."

THIS PAGE INTENTIONALLY LEFT BLANK.

\section*{3 TECHNICAL SUPPORT INFORMATION}

\subsection*{3.1 Remote I/O Troubleshooting}

If the data read from or written to the X or Y area is not input or output normally, troubleshoot as described below.
- Checking if terminating resistors are connected

As exemplified below, terminating resistors need to be connected to both ends of a communication line on the LPU or the I/O unit.

Note: Any LPU module supports two remote I/O lines, RI/O1 and RI/O2, each of which has one of the following ranges of \(\mathrm{X} / \mathrm{Y}\) numbers assigned for it:

RI/O1: 000 to 3FF
RI/O2: 400 to 7FF

\section*{Connecting terminating resistors}

When you want to use a conforming cable, terminate it with a built-in resistor of either 100 or \(150 \Omega\). To use these resistors, short the terminal pairs shown below. If a non-conforming cable is selected and you want to terminate it with a termination value other than 100 and \(150 \Omega\), then connect an appropriate resistor between the signal input terminals (A and B in the figures below).
\begin{tabular}{|c|c|c|c|}
\hline & Terminating with \(100 \Omega\) resistor & Terminating with \(150 \Omega\) resistor & Terminating with arbitrarily selected resistor \\
\hline \[
\begin{gathered}
\text { LPU } \\
\text { module }
\end{gathered}
\] & A: Wired together with the signal cable wire & \begin{tabular}{l}
A: Wired together with the signal cable wire. \\
Any port to which a remote I/O cable wire is not connected must also be terminated.
\end{tabular} & \begin{tabular}{l}
R: Characteristic impedance of remote I/O cable wire \\
\(A, B\) : Each wired together with the signal cable wire.
\end{tabular} \\
\hline RI/O station module & & & \begin{tabular}{l}
R: Characteristic impedance of remote I/O cable wire \\
A, B: Each wired together with the signal cable wire.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{c}
Signal \\
name
\end{tabular}} & \multicolumn{4}{|c|}{ Terminal no. on terminal block } \\
\cline { 2 - 5 } & \multicolumn{2}{|c|}{LPU module } & \multicolumn{2}{c|}{\(\mathrm{RI} / \mathrm{O}\) module } \\
\cline { 2 - 5 } & \(\mathrm{RI} / \mathrm{O} 1\) & \(\mathrm{RI} / \mathrm{O} 2\) & \(\mathrm{RI} / \mathrm{O} 1\) & \(\mathrm{RI} / \mathrm{O} 2\) \\
\hline \(150 \Omega\) & A 5 & B 4 & A 7 & - \\
\hline \(100 \Omega\) & A 6 & B 5 & A 9 & - \\
\hline COM & - & - & A 8 & - \\
\hline A & A 7 & B 6 & A 4 & B 5 \\
\hline B & A 8 & B 7 & A 5 & B 6 \\
\hline SHD & A 9 & B 8 & A 6 & B 7 \\
\hline
\end{tabular}
- Specification of recommended terminating resistor:

Material: Metal oxide film or metal film
Resistance value: Same as the cable's impedance
Accuracy: \(\pm 10 \%\)
Capacity: \(1 / 2 \mathrm{~W}\)
Shape: Axial-lead

\section*{3 TECHNICAL SUPPORT INFORMATION}
- Checking if the I/O address is duplicated or is another station's

Check the address switch settings of the station module in the I/O unit.
- Checking if the remote I/O cable used is conforming to the standard cable spec

Use as the remote I/O cable a communication cable that conforms to the specifications shown below. Also, as the power and grounding cables, use those specified below.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Item} & Spec & Remarks \\
\hline \multirow{15}{*}{Remote I/O} & \multirow[t]{5}{*}{Long-distance cable (at most 300 m per line)} & Characteristic impedance & \(150 \Omega\) & \\
\hline & & Attenuation factor & \(10 \mathrm{~dB} / \mathrm{km}\) & 750 kHz \\
\hline & & Cable size & \multicolumn{2}{|l|}{\begin{tabular}{l}
\(\cdot 0.75 \mathrm{~mm}^{2}(\mathrm{CO}-E V-S X-1 \mathrm{P} \times 0.75 \mathrm{SQ})\) \\
- \(0.3 \mathrm{~mm}^{2}\) (CO-EV-SB-1P \(\times 0.3 \mathrm{SQ}\))
\end{tabular}} \\
\hline & & Recommended cable type & \begin{tabular}{l}
- CO-EV-SX-1P \(\times 0.75 \mathrm{SQ}\) \\
- CO-EV-SB- \(1 \mathrm{P} \times 0.3 \mathrm{SQ}\)
\end{tabular} & Hitachi Cable, Ltd. \\
\hline & & Terminating resistance & \(150 \Omega\) & \\
\hline & \multirow[t]{5}{*}{Mid-distance cable (at most 200 m per line)} & Characteristic impedance & \(150 \Omega\) & \\
\hline & & Attenuation factor & \(12 \mathrm{~dB} / \mathrm{km}\) & 750 kHz \\
\hline & & Cable size & \(0.18 \mathrm{~mm}^{2}\) & \\
\hline & & Recommended cable type & CO-EV-SB-1P \(\times 0.18 \mathrm{SQ}\) & Hitachi Cable, Ltd. \\
\hline & & Terminating resistance & \(150 \Omega\) & \\
\hline & \multirow[t]{5}{*}{Short-distance cable (at most 100 m per line)} & Characteristic impedance & \(100 \Omega\) & \\
\hline & & Attenuation factor & \(21 \mathrm{~dB} / \mathrm{km}\) & 750 kHz \\
\hline & & Cable size & \(0.3 \mathrm{~mm}^{2}\) & \\
\hline & & Recommended cable type & CO-SPEV-SB-1P \(0.3 \mathrm{~mm}^{2}\) & Hitachi Cable, Ltd. \\
\hline & & Terminating resistance & \(100 \Omega\) & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{PCs OK}} & Cable type & Shielded twisted-pair cable & \\
\hline & & Cable length & 100 m or less & \\
\hline & & Cable size & \(0.5 \mathrm{~mm}^{2}\) or more & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{CPU STOP/RUN, RI/O STOP}} & Cable type & Shielded twisted-pair cable & \\
\hline & & Cable length & 100 m or less & \\
\hline & & Cable size & \(0.5 \mathrm{~mm}^{2}\) or more & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Power cable}} & Cable type & Shielded twisted-pair cable or 3-conductor twisted cable & \\
\hline & & Cable size & \(2 \mathrm{~mm}^{2}\) or more & The cable size depends on loads and cable lengths. \\
\hline & ounding cable & Cable size & \(2 \mathrm{~mm}^{2}\) or more & \\
\hline
\end{tabular}

The communication cable must be connected to the terminal block by using solder-less terminals:

Note: Do not use more than one type of cable on the same communication path.
- Checking if extra X and Y numbers are registered

In some cases, an old I/O unit in which a station module of model PST350 or PST360 is installed in the left-end slot is connected to the LPU module. In such a case, if the number of remote I/O transfer points for the LPU module is set to 1024 or greater, decrease the number. To accomplish this, choose [Utility] - [PCs edition] - [Change capacity] in the S10V LADDER CHART SYSTEM and select a value of 512 or smaller as the "Remote I/O points." Here, it should be noted that old I/O units may only be connected to the RI/O1 line of the two existing remote I/O lines on the LPU module. To avoid any trouble, use an S10/2 \(\alpha / O\) unit instead.
- Checking if power is supplied to the I/O unit

If the power supply module installed as the leftmost module in the I/O unit is a model LQV000, LQV020, or LQV100 module and its POWER indicator is not lit, then power must be supplied to that power supply module.

\section*{3 TECHNICAL SUPPORT INFORMATION}
- Remote I/O and inter-CPU link line waveforms
(1) Transmission and reception waveforms -- examples
1.0 V/div \(20 \mu \mathrm{~s} / \mathrm{div}\)

Transmission
(2) Enlarged view of normal waveform
-- example
\[
1.0 \mathrm{~V} / \mathrm{div} \quad 0.5 \mu \mathrm{~s} / \mathrm{div}
\]

(3) Normal waveform on remote I/O line

The voltage must not go down below 1.0 V in this time period.

The transmitted waveform has its crest value of approximately 3 V .
* The received waveform has its crest value of approximately 2 V .

No disturbance must appear in this portion of the waveform.

(4) Normal waveform on inter-CPU link line

(5) Waveform due to non-matching terminating resistor (reflected waveform)

(6) Waveform on the \(75 \Omega\) cable terminated by \(100 \Omega\) resistor -- example

If the communication signal has such problems as waveform distortion and jitters, check if:
- Terminating resistors are connected to both ends of the line.
- There is any wire breakage in the cable.
- The cable used is a recommended one (i.e., it meets the prescribed characteristic requirements).
- The cable used is connected as part of a multidrop line, where no branch is allowed.
- Two or more different types of cables are used in the same link.

If the above troubleshooting does not solve the problem, the most conceivable cause is a hardware failure or a malfunction due to noise. Therefore, replace the module or place the noise source(s) away from the units, power cables, and remote I/O cables.

\subsection*{3.2 LPU Error Information Detail Table}

If an error occurs in any of the installed LPU modules, detail error information is stored in a special table in the LPU module's internal RAM. By accessing this table, called the LPU error information detail table, you can obtain more comprehensive error information than the error information supplied by the basic tool (S10V BASE SYSTEM). This table can be accessed with the MCS function of the basic tool.
The LPU error information detail table can contain up to eight cases of error information. If more than eight errors occur in the LPU module, the oldest case of error information is overwritten with the new error information. This memory content is backed up by battery power supply, so it is retained during periods when the power to the LPU module is OFF.

\section*{(1) Entire table structure}

Address
\begin{tabular}{|c|c|}
\hline /004D D000 & Validity flag \\
\hline /004D D004 & Case pointer \\
\hline /004D D008 & Case 0 (512 bytes) \\
\hline /004D D208 & Case 1 (512 bytes) \\
\hline /004D D408 & Case 2 (512 bytes) \\
\hline /004D D608 & Case 3 (512 bytes) \\
\hline /004D D808 & Case 4 (512 bytes) \\
\hline /004D DA08 & Case 5 (512 bytes) \\
\hline /004D DC08 & Case 6 (512 bytes) \\
\hline /004D DE08 & Case 7 (512 bytes) \\
\hline
\end{tabular}

Validity flag: Indicates whether meaningful data is present in the error detail info table. When this flag is set equal to /0000 0001, it indicates that meaningful error detail data is present in the table.
Case pointer: Points to the case in which to store error information next. This pointer has its initial value of /0000 0000 and is incremented each time an error occurs in the LPU module. When its value exceeds \(/ 00000007\), this pointer is set back to \(/ 00000000\). For example, if the current value of this pointer is \(/ 00000002\), the case in which the latest error information is stored is case 1 .
Cases 0 thru 7: Each is a set of detail error information stored in its dedicated area.
(2) Structure of each case

Error code: ID code of the error detected. For information on the error code, see Section 4.2.1, "LPU (LQP510) error log info and required actions."
Time of error occurrence:
The time at which the error is detected. The time value stored in this location is based on the time maintained by the LPU module. Therefore, if the time maintained by the LPU module is not set correctly, the stored time value does not indicate the actual time at which an error is detected.
Detail info word count:
The number of meaningful bytes of detail information, which is stored in the detail info area, starting from its beginning (offset \(+/ 00000014\)). All the other bytes in that area are meaningless as detail information.
Detail information:
A piece of error detail information stored in its dedicated area.
The format in which it is stored varies with the types of errors detected. For details, see the information provided under "(3) Detail information" below.

Note: The day of week is represented by one of the numbers / 0001 through / 0007 , where \(/ 0001\) stands for Sunday and /0007 for Saturday.
(3) Detail information
- Detail info for error codes 0x1101 and 0x1102 Offset from the beginning of case \(2^{31} \quad 2^{0}\) +/0000 \(0010 \quad\) 0x0000 0000 (detail word count) +/0000 0014 \(0 \times 00000000\)
- Detail info for error code \(0 \times 1105\)

Offset from the beginning
\[
\text { of case } \quad 2^{31}
\]
\(2^{0}\)
+/0000 0010 0x0000 000C (detail word count)
\begin{tabular}{c|c|}
\(+/ 0000\) & 0014 \\
\cline { 2 - 3 } & Address at which error is detected \\
\cline { 3 - 3 } & Read data \\
\hline
\end{tabular}
+/0000 001C
\begin{tabular}{|l|}
\hline Read data \\
\hline Read data \\
\hline
\end{tabular}
- Detail info for error code \(0 \times 1108\)

Offset from the beginning
\begin{tabular}{|c|c|}
\hline of case & \(2^{31}\) \\
\hline +/0000 0010 & 0x0000 0008 (detail word count) \\
\hline +/0000 0014 & Starting address of area \\
\hline +/0000 0018 & Sum value \\
\hline
\end{tabular}
- Detail info for error code 0x110A

Offset from the beginning
of case \(\quad 2^{31}\)
\begin{tabular}{|c|c|}
\hline +/0000 0010 & 0x0000 000C (detail word count) \\
\hline +/0000 0014 & Address at which error is detected \\
\hline +/0000 0018 & Write data \\
\hline +/0000 001C & Read data \\
\hline
\end{tabular}
- Detail info for error code \(0 \times 2301\)

Offset from the beginning
of case \(2^{3}\)
\(2^{0}\)
+/0000 0010 0x0000 0000 (detail word count)
+/0000 0014 \(0 \times 00000000\)
- Detail info for error code 0x2401

Offset from the beginning
\begin{tabular}{|c|c|}
\hline of case & \(2^{31} \quad 2^{0}\) \\
\hline +/0000 0010 & 0x0000 0040 (detail word count) \\
\hline +/0000 0014 & I/F register address 1 \\
\hline & : \\
\hline +/0000 0050 & I/F register address 16 \\
\hline
\end{tabular}
- Detail info for error codes \(0 \times 1209\) and \(0 \times 120 \mathrm{C}\) Offset from the beginning
\begin{tabular}{|c|c|}
\hline of case & \(2^{31}\) \\
\hline +/0000 0010 & 0x0000 0020 (detail word count) \\
\hline +/0000 0014 & Access error-detected address \\
\hline +/0000 0018 & 0x0000 0000 \\
\hline +/0000 001C & 0x0000 0000 \\
\hline +/0000 0020 & 0x0000 0000 \\
\hline +/0000 0024 & 0x0000 0000 \\
\hline +/0000 0028 & 0x0000 0000 \\
\hline +/0000 002C & 0x0000 0000 \\
\hline +/0000 0030 & 0x0000 0000 \\
\hline
\end{tabular}
- Detail info for error code 0x1103

Offset from the beginning
\[
\text { of case } \quad 2^{31}
\]
\(2^{0}\)
+/0000 0010 0x0000 000C (detail word count) +/0000 0014 Address at which error is detected +/0000 0018 +/0000 001C Write data Read data
- Detail info for error code \(0 \times 1106\)

Offset from the beginning
\begin{tabular}{|c|c|}
\hline of case & \(2^{31}\) \\
\hline +/0000 0010 & 0x0000 0008 (detail word count) \\
\hline +/0000 0014 & Starting address of ROM area \\
\hline +/0000 0018 & Sum value \\
\hline
\end{tabular}
- Detail info for error code \(0 \times 1109\)

Offset from the beginning
\begin{tabular}{|c|c|}
\hline of case & \(2^{31}\) \\
\hline +/0000 0010 & 0x0000 0004 (detail word count) \\
\hline +/0000 0014 & Error No. (Note 1) \\
\hline
\end{tabular}

Note 1: 0x0000 0001: Indicates that processing is finished earlier than the specified time limit.
\(0 x 0000\) 0002: Indicates that processing is finished later than the specified time limit.
- Detail info for error code 0x110B

Offset from the beginning
of case
+/0000 0010
+/0000 0014
\begin{tabular}{|c|}
\hline \(0 \times 00000004\) (detail word count) \\
\hline Set value of switch \\
\hline
\end{tabular}
- Detail info for error code 0x120D

Offset from the beginning
\begin{tabular}{|c|c|}
\hline of case & \(2^{31}\) \\
\hline +/0000 0010 & 0x0000 002C (detail word count) \\
\hline +/0000 0014 & N -coil number \\
\hline +/0000 0018 & Ladder program counter (SPC) \\
\hline +/0000 001C & \(0 \times 00000000\) \\
\hline +/0000 0020 & Ladder instruction in which the error is detected \\
\hline +/0000 0024 & 0x0000 0000 \\
\hline +/0000 0028 & 0x0000 0000 \\
\hline +/0000 002C & 0x0000 0000 \\
\hline +/0000 0030 & \(0 \times 00000000\) \\
\hline +/0000 0034 & 0x0000 0000 \\
\hline +/0000 0038 & 0x0000 0000 \\
\hline +/0000 003C & 0x0000 0000 \\
\hline
\end{tabular}

\section*{3 TECHNICAL SUPPORT INFORMATION}

Note 2: The table below is a list of I/F register addresses and the corresponding optional modules in which errors of this type are detected.
\begin{tabular}{|l|l|}
\hline I/F register address & \multicolumn{1}{|c|}{ Corresponding optional module } \\
\hline /41F800, F810 & CPU link (/41F800: Main module, /41F810: Submodule) \\
\hline /41F820, F830 & OD.RING (/41F820: Main module, /41F830: Submodule) \\
\hline /41F920, F930 & \begin{tabular}{l}
J.NET/J.NET-INT/IR.LINK (/41F920: Main module, /41F930: \\
Submodule)
\end{tabular} \\
\hline \begin{tabular}{l}
/41FA00, FA10, \\
FA20, FA30
\end{tabular} & \begin{tabular}{l}
RS-232C/RS-422 (/41FA00: Channel 0, /41FA10: Channel 1, \\
/41FA20: Channel 2, /41FA30: Channel 3)
\end{tabular} \\
\hline /41FD20, FD30 & ET.NET/SV.LINK (/41FD20: Main module, /41FD30: Submodule) \\
\hline /41FE20, FE30 & FL.NET/EQ.LINK (/41FE20: Main module, /41FE30: Submodule) \\
\hline \begin{tabular}{l}
/41FF00, FF10, \\
FF20, FF30
\end{tabular} & \begin{tabular}{l}
D.NET (/41F00: Channel 0, /41F10: Channel 1, /41F20: Channel 2, \\
/41F30: Channel 3)
\end{tabular} \\
\hline
\end{tabular}

\section*{- Detail info for error codes other than the above}

Offset from the beginning
\begin{tabular}{|c|c|c|}
\hline of case & \(2^{31} \quad 2^{0}\) & \\
\hline +/0000 0010 & 0x000001EC (detail word count) & \\
\hline +/0000 0014 & N -coil number & (Note 1) \\
\hline +/0000 0018 & Ladder program counter (SPC) & (Note 2) \\
\hline +/0000 001C & HI-FLOW executed process No. & (Note 3) \\
\hline +/0000 0020 & R0 register & \(\triangle\) \\
\hline +/0000 0024 & R1 register & \\
\hline +/0000 0028 & R2 register & \\
\hline +/0000 002C & R3 register & \\
\hline +/0000 0030 & R4 register & \\
\hline +/0000 0034 & R5 register & \\
\hline +/0000 0038 & R6 register & \\
\hline +/0000 003C & R7 register & \\
\hline +/0000 0040 & R8 register & \\
\hline +/0000 0044 & R9 register & \\
\hline +/0000 0048 & R10 register & \\
\hline +/0000 004C & R11 register & \\
\hline +/0000 0050 & R12 register & \\
\hline +/0000 0054 & R13 register & \\
\hline +/0000 0058 & R14 register & \\
\hline +/0000 005C & Stack pointer & MPU's \\
\hline +/0000 0060 & Program counter & internal \\
\hline +/0000 0064 & Status register & registers \\
\hline +/0000 0068 & GBR & \\
\hline +/0000 006C & VBR & \\
\hline +/0000 0070 & MACH & \\
\hline +/0000 0074 & MACL & \\
\hline +/0000 0078 & PR & \\
\hline +/0000 007C & FR0 register & \\
\hline +/0000 0080 & FR1 register & \\
\hline +/0000 0084 & FR2 register & \\
\hline +/0000 0088 & FR3 register & \\
\hline +/0000 008C & FR4 register & \\
\hline +/0000 0090 & FR5 register & \\
\hline +/0000 0094 & FR6 register & \\
\hline +/0000 0098 & FR7 register & \\
\hline +/0000 009C & FR8 register & \\
\hline +/0000 00A0 & FR9 register & \\
\hline +/0000 00A4 & FR10 register & \\
\hline +/0000 00A8 & FR11 register & \\
\hline +/0000 00AC & FR12 register & \\
\hline +/0000 00B0 & FR13 register & \\
\hline +/0000 00B4 & FR14 register & \\
\hline +/0000 00B8 & FR15 register & \\
\hline +/0000 00BC & FPUL & \\
\hline +/0000 00C0 & FPSCR & \(\checkmark\) \\
\hline
\end{tabular}

Offset from the beginning
\begin{tabular}{|c|c|c|c|}
\hline of case & \(2^{31} \quad 2^{16}\) & \multicolumn{2}{|l|}{\({ }^{5} \quad 2^{0}\)} \\
\hline +/0000 00C4 & BCR1 & BCR2 & \multirow[t]{8}{*}{internal registers} \\
\hline +/0000 00C8 & WCR1 & RAMER & \\
\hline +/0000 00CC & PADR & PBDR & \\
\hline +/0000 00D0 & PCDR & PDDR & \\
\hline +/0000 00D4 & PEDR & PFDR & \\
\hline +/0000 00D8 & PGDR & PHDR & \\
\hline +/0000 00DC & PJDR & PKDR & \\
\hline +/0000 00E0 & PLDR & /0000 & \\
\hline +/0000 00E4 & IRQSEL & IRQSTS & \multirow{37}{*}{LPU's internal registers} \\
\hline +/0000 00E8 & REV & BUSTOUT & \\
\hline +/0000 00EC & BTOADRH & BTOADRL & \\
\hline +/0000 00F0 & RIOMODE & RIOSTART & \\
\hline +/0000 00F4 & RIOSTS & RIOINTMASK & \\
\hline +/0000 00F8 & RIOFIFOADR & ROPFIFODT & \\
\hline +/0000 00FC & IOMODE & STSCHK & \\
\hline +/0000 0100 & IOSTS & STATUS0 & \\
\hline +/0000 0104 & STATUS1 & STATUS2 & \\
\hline +/0000 0108 & STATUS3 & PIOSTS & \\
\hline +/0000 010C & PERRADRH & PERRADRL & \\
\hline +/0000 0110 & PERRDATAH & PERRDATAL & \\
\hline +/0000 0114 & PRTYMODE & SEQREG0 & \\
\hline +/0000 0118 & SEQREG1 & SEQREG2 & \\
\hline +/0000 011C & SEQREG3 & SEQREG4 & \\
\hline +/0000 0120 & SEQREG5 & SEQREG6 & \\
\hline +/0000 0124 & SEQREG7 & SEQREG8 & \\
\hline +/0000 0128 & SEQREG9 & SEQREG10 & \\
\hline +/0000 012C & SEQREG11 & SEQREG12 & \\
\hline +/0000 0130 & SEQREG13 & SEQREG14 & \\
\hline +/0000 0134 & SEQREG15 & SEQPCH & \\
\hline +/0000 0138 & SEQPCL & RESET & \\
\hline +/0000 013C & SEQSTS & SEQINTSTS & \\
\hline +/0000 0140 & SEQINTMSK & SEQRUN & \\
\hline +/0000 0144 & SPERRADRH & SPERRADRL & \\
\hline +/0000 0148 & SPERRDATAH & SPERRDATAL & \\
\hline +/0000 014C & SEQMODE & SEQSHADRH & \\
\hline +/0000 0150 & SEQSHADRL & /0000 & \\
\hline +/0000 0154 & \multicolumn{2}{|c|}{MSW0} & \\
\hline +/0000 0158 & \multicolumn{2}{|c|}{MSW1} & \\
\hline +/0000 015C & \multicolumn{2}{|c|}{MSW2} & \\
\hline +/0000 0160 & \multicolumn{2}{|c|}{MSW3} & \\
\hline +/0000 0164 & \multicolumn{2}{|c|}{MSW4} & \\
\hline +/0000 0168 & \multicolumn{2}{|c|}{MSW5} & \\
\hline +/0000 016C & \multicolumn{2}{|c|}{MSW6} & \\
\hline +/0000 0170 & \multicolumn{2}{|c|}{MSW7} & \\
\hline +/0000 0174 & \multicolumn{2}{|c|}{MSW8} & \\
\hline
\end{tabular}

Note 1: This location is used to store the nesting-coil number that is being executed in a ladder program at the occurrence of an error. If no ladder program is running at that time, the value \(/ 00000000\) is stored in this location.
Note 2: This location is used to store the value of the program counter in a ladder program that is running at the occurrence of an error. This program counter value is an address used in the ladder processor and is calculated by evaluating the following mathematical formula:

Address at the occurrence of an error \(=\) program counter \((S P C) \times 4+/ 100000\)
Note 3: This location is used to store the process number of a HI-FLOW process that is running at the occurrence of an error. If no HI-FLOW process is running or HI-FLOW is not already loaded in at that time, either the value \(0 \times 00000000\) or \(0 \times 000000 \mathrm{FF}\) is stored in this location.
(Continued from preceding page)

\subsection*{3.3 Clearing the Entire Memory}
- Clearing the LPU module's memory

The entire memory of any LPU module can be cleared (to a condition at shipment) by performing the following procedure:
(1) Turn off the power to the LPU unit.
(2) Set the LPU module's operational setting switch \((T / M)\) in E-position.
(3) Turn on the power to the LPU unit and wait about three seconds.
(4) Turn off the power to the LPU unit.
(5) Set the LPU module's operational setting switch (T/M) in F-position.
(6) Turn on the power to the LPU unit again and wait about 20 seconds. Then, the LPU module's six LED indicators will all come on to indicate the completion of clearing its entire memory.
(7) Turn off the power to the LPU unit.
(8) Set the LPU module's operational setting switch (T/M) in 0-position.
- Clearing the CMU module's memory By using such tools as the HI-FLOW SYSTEM, clear the user programs in the CMU module's memory. (No dedicated clear command is provided for this purpose.)

\subsection*{3.4 Backing Up and Restoring}

Replacement of an existing module may sometimes requires prior backing up and subsequent replacement of the entire software system. In these cases, use the S10V BACKUP RESTORE SYSTEM (also called the batch saving/loading system).
- Backup/restore areas

The BACKUP RESTORE SYSTEM backs up all the memory areas listed in the table below at one time.

Table 3-1 Memory Areas Subjected to Backing up and Restoring (1/3)
\begin{tabular}{|c|c|c|c|c|}
\hline No. & \multicolumn{2}{|r|}{User area name} & Addresses & Remarks \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{PCs edition} & PCs No., sequence cycle time, watchdog timer, \(10-\mathrm{ms}\) timer, N -coil master resetting-time operation mode, timer (T), oneshot (U) points, PI/O settings, ladder program, I/O comment, user (arithmetic) function area size, RI/O settings & /004B 0200 to /004B 02FE & \\
\hline & & Analog counter & /004B 0300 to /004B 03C2 & \\
\hline \multirow{16}{*}{2} & \multirow{16}{*}{Ladder chart} & Ladder program, I/O comment, user (arithmetic) function & /0010 0000 to /0016 7FFE & (Note 1) \\
\hline & & Keep coil, K000 to FFF (not battery-backed up) & /0040 1000 to /0040 11FE & \\
\hline & & C-contact, CW000 to 0FF (not battery-backed up) & /0040 1700 to /0040 171E & \\
\hline & & Work register, FW000 to BFF (not battery-backed up) & /0040 2000 to /0040 37FE & \\
\hline & & Long-word register, BD000 to 1FE (not battery-backed up) & /0040 3800 to /0040 3FFE & \\
\hline & & Data register, DW000 to FFF (not battery-backed up) & /0047 0000 to /0047 1FFE & \\
\hline & & Counter count, CC000 to 0FF & /0048 0600 to /0048 07FE & \\
\hline & & Keep coil, K000 to FFF (battery-backed up) & /0048 1000 to /0048 11FE & \\
\hline & & C-contact, CW000 to 0FF (battery-backed up) & /0048 1700 to /0048 17FE & \\
\hline & & Work register, FW000 to BFF (battery-backed up) & /0048 2000 to /0048 37FE & \\
\hline & & Long-word register, BD000 to 1FE (battery-backed up) & /0048 3800 to /0048 3FFE & \\
\hline & & Long-word register, LML0000 to 1FFF & /0049 0000 to /0049 7FFE & \\
\hline & & Floating-point register, LG0000 to 1FFF & /0049 8000 to /0049 FFFE & \\
\hline & & Word register, LXW0000 to 3FFF & /004A 0000 to /004A 7FFE & \\
\hline & & Ethernet communication management table & /004A 8000 to /004A AFFE & \\
\hline & & Data register, DW000 to FFF (battery-backed up) & /004F 0000 to \(/ 004 \mathrm{~F} 1 \mathrm{FFE}\) & \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{HI-FLOW} & User program & /0308 0000 to /033F FFFE & (Note 2) (Note 3) \\
\hline & & Ethernet management table & /004A 8000 to \(/ 004 \mathrm{~A}\) AFFE & \\
\hline \multirow{7}{*}{4} & \multirow{7}{*}{RPDP} & MAP & /2000 0000 to /200B 943E & (Note 3) \\
\hline & & GAMMT & /2800 D000 to /2800 D0FE & (Note 3) \\
\hline & & Task space & /3000 0000 to /3FFF FFFE & (Note 2) (Note 3) \\
\hline & & GLBR & /4000 0000 to /4FFF FFFE & (Note 2) (Note 3) \\
\hline & & GLBW & /5000 0000 to /5FFF FFFE & (Note 2) (Note 3) \\
\hline & & IRSUB & /6000 0000 to /6FFF FFFE & (Note 2) (Note 3) \\
\hline & & Site name & /7C00 2000 to /7C00 200E & (Note 3) \\
\hline
\end{tabular}

Table 3-1 Memory Areas Subjected to Backing Up and Restoring (2/3)
\begin{tabular}{|c|c|c|c|c|}
\hline No. & & User area name & Addresses & Remarks \\
\hline \multirow{28}{*}{5} & \multirow{28}{*}{NX-HOST} & GAMMT & /2800 D000 to /2800 D0FE & (Note 3) \\
\hline & & \multirow{10}{*}{NX-ACP program} & /2000 0000 to /2000 003E & \multirow{10}{*}{(Note 3)} \\
\hline & & & /2000 3440 to /2000 383E & \\
\hline & & & /2000 40C4 to /2000 40C6 & \\
\hline & & & /2000 40E4 to /2000 40E6 & \\
\hline & & & /2000 4104 to /2000 4106 & \\
\hline & & & /2000 4204 to /2000 4206 & \\
\hline & & & /2000 4440 to /2000 4442 & \\
\hline & & & /2000 5250 to /2000 53CE & \\
\hline & & & /3000 0000 to /3003 FFFE & \\
\hline & & & /6000 0000 to /6001 7FFE & \\
\hline & & \multirow{3}{*}{NX/Ladder program} & /2000 0000 to /2000 003E & \multirow{3}{*}{(Note 3)} \\
\hline & & & /2000 19C0 to /2000 1A7E & \\
\hline & & & /3004 0000 to /3005 1FFE & \\
\hline & & \multirow{12}{*}{NX/ACP control table (local DF)} & /2001 0440 to /2001 0442 & \multirow{12}{*}{(Note 3)} \\
\hline & & & /2001 08F0 to /2001 096E & \\
\hline & & & /2001 4440 to /2001 44FE & \\
\hline & & & /2001 5440 to /2001 5676 & \\
\hline & & & /2002 4440 to /2002 46C6 & \\
\hline & & & /5000 0000 to /5006 2FFE & \\
\hline & & & /2001 0440 to /2001 0442 & \\
\hline & & & /2001 08F0 to /2001 096E & \\
\hline & & & /2001 4440 to /2001 44FE & \\
\hline & & & /2001 5440 to /2001 568A & \\
\hline & & & /2002 4440 to /2002 46C6 & \\
\hline & & & /5000 0000 to /500B E000 & \\
\hline & & User (arithmetic) function program, NXSAT & /004F 2000 to \(/ 004 \mathrm{~F} 224 \mathrm{~A}\) & (Note 3) \\
\hline & & User (arithmetic) function program, NXACP & /004F 3000 to /004F 32EE & (Note 3) \\
\hline \multirow{2}{*}{6} & \multirow{2}{*}{ET.NET} & IP address, subnet mask, broadcast address, routing info & /004B 0620 to /004B 073E & \\
\hline & & Comment & /007B 0D00 to /007B 0D3E & \\
\hline \multirow[t]{2}{*}{7} & \multirow[b]{2}{*}{OD.RING/SD.LINK} & Module installation info area for main module & /0097 8002 to /0097 802E & \\
\hline & & Module installation info area for submodule & /009F 8002 to /009F 802E & \\
\hline \multirow{3}{*}{8} & \multirow[t]{3}{*}{\begin{tabular}{l}
J.NET/ \\
J.NET-INT/ \\
IR.LINK
\end{tabular}} & J.NET-INT/IR.LINK task registration area & /004B 07C0 to /004B 07FE & \\
\hline & & Slave parameter table for main module & /00A7 8008 to /00A7 FFFE & \\
\hline & & Slave parameter table for submodule & /00AF 8008 to /00AF FFFE & \\
\hline \multirow{7}{*}{9} & \multirow{7}{*}{FL.NET} & IP address, subnet mask, node name & /004B 0740 to /004B 076E & \\
\hline & & Local-node status table for main module & /00D4 1A00 to /00D4 1A32 & \\
\hline & & Local-node initialization table for main module & /00D7 0020 to /00D7 004E & \\
\hline & & Other(participating)-node allotment table for main module & /00D7 0050 to /00D7 1E4E & \\
\hline & & Local-node status table for submodule & /00DC 1A00 to /00DC 1A32 & \\
\hline & & Local-node initialization table for submodule & /00DF 0020 to /00DF 004E & \\
\hline & & Other(participating)-node allotment table for submodule & /00DF 0050 to /00DF 1E4E & \\
\hline
\end{tabular}

\section*{3 TECHNICAL SUPPORT INFORMATION}

Table 3-1 Memory Areas Subjected to Backing Up and Restoring (3/3)
\begin{tabular}{|c|c|c|c|c|}
\hline No. & \multicolumn{2}{|r|}{User area name} & Addresses & Remarks \\
\hline \multirow{8}{*}{10} & \multirow{8}{*}{D.NET} & Parameter table, peer, slave parameter table for ch0 & /00E3 0000 to /00E3 5AFE & \\
\hline & & Slave operation table for ch0 & /00E3 6000 to /00E3 608E & \\
\hline & & Parameter table, peer, slave parameter table for ch1 & /00E7 0000 to /00E7 5AFE & \\
\hline & & Slave operation table for ch1 & /00E7 6000 to /00E7 608E & \\
\hline & & Parameter table, peer, slave parameter table for ch2 & /00EB 0000 to /00EB 5AFE & \\
\hline & & Slave operation table for ch2 & /00EB 6000 to /00EB 608E & \\
\hline & & Parameter table, peer, slave parameter table for ch3 & /00EF 0000 to /00EF 5AFE & \\
\hline & & Slave operation table for ch3 & /00EF 6000 to /00EF 608E & \\
\hline 11 & Inter-CPU link & PCs edition information & /004B 0600 to /004B 061E & \\
\hline \multirow{4}{*}{12} & \multirow{4}{*}{RS-232C/RS-422} & LGB table for ch0 & /00F4 8100 to /00F4 81FE & \\
\hline & & LGB table for ch1 & /00F5 8100 to /00F5 81FE & \\
\hline & & LGB table for ch2 & /00F6 8100 to /00F6 81FE & \\
\hline & & LGB table for ch3 & /00F7 8100 to /00F7 81FE & \\
\hline \multirow{9}{*}{13} & \multirow{9}{*}{EQ.LINK} & IP address, subnet mask, node name & /004B 0740 to /004B 076E & \\
\hline & & Local-node status table for main module & /00D4 1A00 to /00D4 1A32 & \\
\hline & & Local-node initialization table for main module & /00D7 0020 to /00D7 1E4E & \\
\hline & & Local-/remote-node initialization table for main module & /00D7 2058 to /00D7 2060 & \\
\hline & & Local-/remote-node area division table for main module & /00D7 2140 to /00D7 23FE & \\
\hline & & Local-node status table for submodule & /00DC 1A00 to 000 DC 1 A 32 & \\
\hline & & Local-node initialization table for submodule & /00DF 0020 to /00DF 1E4E & \\
\hline & & Local-/remote-node initialization table for submodule & /00DF 2058 to /00DF 2060 & \\
\hline & & Local-/remote-node area division table for submodule & /00DF 2140 to /00DF 23FE & \\
\hline \multirow{3}{*}{14} & \multirow{3}{*}{BASE SYSTEM} & IP address, subnet mask, and broadcast address of CMU & /004B 0770 to /004B 07FE & \\
\hline & & CMU routing information & /004B 0800 to /004B 0848 & \\
\hline & & Time setting & /0047 3234 to /0047 3244 & \\
\hline
\end{tabular}

Note 1: The range of address space allocated varies with PCs edition settings.
Note 2: The range of address space allocated varies with user-provided settings.
Note 3: This memory area is not subjected to backing up and restoring if an RS-232C or ET.NET (LQE520) connection is used. To back up and restore this memory area, use Ethernet communication via a CMU or an ET.NET (LQE720) module.
- Backing up procedure

Choose [Start] - [Programs] - [Hitachi S10V] - [S10V Backup Restore System] on the personal computer (PC) connected with the S10V system. The Backup Restore System then starts. As described in detail below, click on the Backup button in the [BACKUP RESTORE SYSTEM] window, and then the [Backup] window appears on the screen. Now the BACKUP RESTORE SYSTEM is ready for backing up the S10V system. For details on the S10V BACKUP RESTORE SYSTEM, refer to the "BACKUP RESTORE For Windows® (manual number SVE-3-127)."
(1) Click the Backup button in the [BACKUP RESTORE SYSTEM] window. The [Backup] window then appears on screen.

At the same time, if a CMU module is installed and a connection is established by using an RS-232C or an ET.NET (model LQE520) module, the following warning message is also presented:

In this case, data backing up is not performed for the CMU module. If you want to perform backing up for the CMU module, re-establish a connection by using the Ethernet support provided by that CMU module or an ET.NET (model LQE720) module.
(2) Enter the name and position finder of the folder to which to save the contents of the memory areas, and the desired PCs number, along with a comment, if necessary.

The following information describes the input items and buttons displayed in the aforementioned [Backup] window.

Name: Is the name of the folder in which to place the files backed up. This folder name is defaulted to none; the box is displayed blank.
Position: Is the directory path to the specified folder name. This position can be specified either by entering the directory path beginning with the drive name directly into the text box, or by clicking the Refer... button and choosing that directory path. This position is defaulted to the installation directory for the BACKUP RESTORE SYSTEM.
PCs number: Is a PCs number for use in backup. Use the displayed PCs number (default) for usual backup operations. The default PCs number is the PCs number of the PCs with which the BACKUP RESTORE SYSTEM is connected.
Comment: Is an optionally entered piece of text of up to 256 characters in length.
OK button: Is clicked to start a backup operation. When this button is clicked, the
BACKUP RESTORE SYSTEM first checks each input value for error.
The input items checked for error are as follows:
Name -- if this item is omitted, an error results.
Position -- if this item is omitted or an invalid drive name is specified as this item, an error results.
PCs number -- if a number outside the range 0 to 9999 is specified as this item, an error results.
Upon completion of the above check, the BACKUP RESTORE SYSTEM starts the backup process.
Cancel button: Is clicked when you want to return to the [BACKUP RESTORE SYSTEM] window without backing up the files.
Refer... button: Is clicked when you want to change the displayed position. Clicking this button presents the [Reference] window.

Select the desired folder and click the OK button. Then, the [Reference] window disappears and the [Backup] window appears again. The folder you have just selected in the [Reference] window is displayed with its full path name in the Position (I) text box. If you click the Cancel button in place of the OK button, the [Reference] window disappears and the [Backup] window appears again as usual, but the folder you have selected in the [Reference] window is not displayed in the Position (I) text box.
(3) When you finish entering all necessary values, click the OK button. Then, the backup process begins.
If you do not want to start the backup process, click the Cancel button in place of the OK button. Then, the [Backup] window disappears and the [BACKUP RESTORE SYSTEM] window appears again.
(4) When the backup process begins, the "Do you ABORT all tasks?" message is presented:

In this dialog box, if you click the Yes button, all the active tasks are aborted. If you click the No button instead, none of the tasks is aborted. If you click the Cancel button in place of the above two, the BACKUP RESTORE SYSTEM displays the [Backup] window again without backing up the files.
<Aborting all the tasks>
If the entire plant equipment under control can be stopped, abort all the active tasks in your system. When the tasks are aborted, they are automatically post-processed properly, so that the files can be backed up safely.
If the backup process is started without aborting the tasks, the files will be backed up in a condition in which the memory areas being accessed by the tasks are dynamically changing in their contents. In addition to this, if the operating system is stopped by performing the steps described below, the tasks are forcibly stopped even if they are running. In these cases, some contents of the areas accessed by the tasks may remain undefined, and this condition may lead to an error during backup.
(5) If the PCs is currently in RUN state, the following message is displayed:

In this dialog box, if you click the Yes button, the BACKUP RESTORE SYSTEM continues the backup process. If you click the No button, it displays the [Backup] window again without backing up the files.
(6) The BACKUP RESTORE SYSTEM displays the following message:

In this dialog box, if you click the Yes button, the BACKUP RESTORE SYSTEM stops the operating system and starts the backup process. If you click the No button, it starts the backup process without stopping the operating system.
When you click the Yes button in the above dialog box, the following confirmation message is displayed to confirm that you really want to reset the PCs.

\section*{BACKUP RESTORE SYSTEM X}

It reset PCs. OK?

OK

Clicking the OK button starts the PCs resetting process.
The same confirmation message as above is also displayed at the end of the backup process. When it is displayed, do the same as you have done to the above confirmation message.
\(<\) Stopping the operation system \(>\)
If the entire plant equipment under control can be stopped, stop the operating system (OS). If the backup process is started without stopping the OS, the files will be backed up in a condition in which the work registers in use are dynamically changing in their contents. In this case, some contents of the work registers may remain undefined, and this condition may lead to an error during backup.
(7) The window showing the progress of the backup process appears:

When the backup process is completed, click the OK button. (This OK button is not selectable until the backup process is complete.) Then, the [Backup] window appears again.
If you click the Cancel button instead, the BACKUP RESTORE SYSTEM discontinues the backup process and displays the [Backup] window again. In this case, the file(s) that have been backed up before your clicking the Cancel button remain undeleted. Do not use these files for backup. They may cause a malfunction.
(8) Finish your backup operation by clicking the Cancel button in the [Backup] window.
\(<\) Restrictions>
The size of save area cannot be changed for each individual module.

> If the backup process in progress is canceled and ends up with an error, the OS may remain in a stop state. Therefore, be sure to check if the OS is in RUN state by using an appropriate utility command. If it is not, put it back into RUN state by using the same utility command.

<Estimate of the time required for a backup>
If you back up approximately 22 MB of data (maximum save size) for both the LPU and CMU modules by using a personal computer with \(1-\mathrm{GHz}\) CPU, the backup will require approximately three minutes. However, this time requirement varies depending on the performance of the machine you use.
- Restoring procedure

As is done in file backup, start the S10V BACKUP RESTORE SYSTEM on the personal computer (PC) connected with the S10V system. Then, as described in detail below, click on the Restore button in the [BACKUP RESTORE SYSTEM] window. The [Select Restore File] window then appears on the screen. Now the BACKUP RESTORE SYSTEM is ready for restoring the S10V system's backed up files.
(1) Click the Restore button in the [BACKUP RESTORE SYSTEM] window.
(2) The [Select Restore File] window appears:

Select the folder you want to restore, and click the OK button. (The OK button cannot be clicked if the selected folder is not a folder containing the backup files.) Then, the [Restore Information] window appears. If the backup files are stored on floppy disk or some other storage media, choose the drive from the "Drive" pulldown menu. If you do not want to restore the backup files, click the Cancel button. Then, the BACKUP RESTORE SYSTEM closes the [Select Restore File] window and displays the [BACKUP RESTORE SYSTEM] window again without restoring the backup files.
The "Comment" box in the [Select Restore File] window is displayed but does not allow the input of text. If a comment was entered in the previous backup operation, it is displayed when you have selected the backup files.
(3) Click the OK button in the [Select Restore File] window. The [Restore Information] window is then displayed.

At the same time, if a CMU module is installed, and there is data backed up for that CMU module, and a connection is established by using the RS-232C or ET.NET (LQE520) module, then the following warning message appears:
```

BACKUP RESTORE SYSTEM

Since it has connected with RS-232C or ET.NET, the restore file of CMU is not loaded.


In this case, data restoring is not performed for the CMU module. If you want to perform data restoring for the CMU module, re-establish a connection by using the Ethernet support provided by that CMU module or an ET.NET (model LQE720) module.
In addition, if there is a mismatch between the installed (mounted) modules and backed up files, and some of the modules do not require restoration, then the following warning message is displayed:

There are modules which are not loaded since the mount status of module and the existence of save data is mismatching.
$\square$

The [Restoration Information] window provides, in a list form, information as to whether each predefined type of module is actually installed in the system and whether the corresponding data is backed up. However, this window provides no such information on any predefined type of module for which no data is backed up. Take a look at the displayed list and, if you want to restore all the backup data in the list, click the OK button. Then, the BACKUP RESTORE SYSTEM starts the restoration process. (Note)
If you do not want to restore the backup data, click the Cancel button. Then, the [Restore Information] window disappears and the [Select Restore File] window appears again.
The following information describes the items displayed in the [Restoration Information] window.
Module: Is the name of a predefined module type for which the BACKUP RESTORE
SYSTEM can perform a restore operation. If two or more modules are defined in the same area by installation, all of their module names are presented in the Module column. For information on the types of modules whose names are presented in the Module column, see Table 3-3, "Backup Areas." If no module is installed for a predefined type of module, one of the following module names is presented in the Module column, if necessary:

OD.RING -- presented for OD.RING and SD.LINK modules
J.NET -- presented for J.NET, J.NET-INT, and IR.LINK modules

RS-232C -- presented for RS-232C and RS-422 modules
Mount: Indicates whether a listed module type is actually installed or not. If a module is installed, the string "Mounted" is presented in the Mount column. If not, the string "Unmounted" is presented in the same column.
Save data: Indicates whether data is backed up for a listed module type or module. If the data is backed up, the string "Data exist" is presented in the Save data column. If not, the string "No data" is presented in the same column.
Disagreement: Indicates whether there is a mismatch between the installed modules and backed up files. If a module is installed but no data is backed up for it, or if a module is not installed but data is backed up for the module type, then an asterisk ("*") is displayed in the Disagreement column, indicating that the BACKUP RESTORE SYSTEM will not perform a restore operation for the module type. If a module is installed and the data is backed up for it, nothing is displayed in the same column, indicating that it will perform a restore operation for the module type.

Note: If there is a mismatch between the PCs number in a backup file and the PCs number in a restoration destination, the [PCsNo. Check] window shown below is displayed. In this case, select the desired radio button and click the OK button. However, if the PCs number in a backup file's header is 9999 , it is not subjected to a check. In this case, care must be taken because the PCs number of the restoration destination PCs is overwritten with the PCs number in the backup file's body.


Restore.It rewrites by PCsNo of the wsvl file header.:
Is an option to carry out a restore operation while overwriting the PCs number in the restoration destination with the PCs number in the backup file's header. The PCs number in the backup file's header is one that is specified at the time of backup.
Restore.It rewrites by PCsNo of the wsvl file main part.:
Is an option to carry out a restore operation while overwriting the PCs number in the restoration destination with the PCs number in the backup file's body. The PCs number in the backup file's body is one that is set in the PCs data backed up.
Restore.PCsNo is not rewritten.:
Is an option to carry out a restore operation without overwriting the PCs number in the restoration destination.
No restore.: Is an option not to carry out a restore operation. Of these, the default option is "No restore".

In addition, if a connection is established by using the Ethernet support provided by a CMU module or ET.NET (model LQE720) module, and there is a mismatch between the IP address for that connection and the IP address in a backup file, then the [IP Address Check] window shown below is displayed. In this case, select the desired radio button and click the OK button. However, if the IP address for the connection is "192.192.192.1", it is not subjected to a check, assuming that the module with which the connection is established is operating using a fixed-IP address setting. In this case, care must be taken because a communication line error may occur during restore operation.


Restore.It rewrites by IP address of the wsvl file.:
Is an option to carry out a restore operation while overwriting the IP address in the restoration destination with the IP address in the backup file. In this case, the IP address-related information (subnet mask, broadcast address, and routing information) is also subjected to overwriting.
Restore.IP adrress is not rewritten.:
Is an option to carry out a restore operation without overwriting the IP address in the restoration destination.
No restore.: Is an option not to carry out a restore operation.
Of these, the default option is "No restore".
If the "Restore.It rewrites by IP address of the wsvl file." option is selected in the [IP
Address Check] window, the following IP address change message is presented at the end of a restore operation:


At this moment, the restored IP address value is not effective. To make it effective, first ensure that a change of the prevailing IP address setting will not cause any problem. Then, reset the PCs manually, or turn off the power to it and back on again.
(4) If the PCs is in RUN state, a confirmation message is presented to check if you really want to carry out a restore operation. If so, click the Yes button. Then, the BACKUP RESTORE SYSTEM starts a restore operation. If not, click the No button. Then, it displays the [Backup] window again without starting a restore operation.

## TECHNICAL SUPPORT INFORMATION

(5) When a restore operation is started, a message to ask permission to reset the PCs is presented. Click the OK button in the dialog. The PCs is then reset.
(6) Upon completion of the PCs resetting, the following confirmation message is presented:


If you click the Yes button in the above dialog, the keep-coil and counter-count backup information is restored.
If you click the No button instead, it is not restored. Here:
Keep-coil: Keep-relay (blackout hold latch type) in the range KW000 to KWFFF.
Counter count: Up-down counter (count) in the range CC000 to CC0FF.
(7) When the Yes or No button is clicked in the above "Do you recover the information on ......?" confirmation dialog, the [Restoration of keep relay coil and count value information] window disappears and the following window indicating the progress of the restore operation is displayed.


If you click the Cancel button during the restore operation, the [Restore] window disappears and the [Select Restore File] window appears again. In this case, the BACKUP RESTORE SYSTEM has finished only part of the requested restore operation, so your system cannot still be used normally. Any attempt to use your system in that condition will cause a malfunction. To avoid a malfunction, carry out the restore operation all over again. When the restore operation is completed, a message to ask permission to reset the PCs is presented again. Click the OK button. Then, resetting of the PCs is started.

When the PCs resetting is completed, click the OK button. Then, the [Restore] window disappears and the [Select Restore File] window appears again.
(8) Finish your restore operation by clicking the Cancel button in the [Select Restore File] window.

If the restoration process in progress is canceled and ends up with an error, the OS may remain in a stop state. Therefore, be sure to check if the OS is in RUN state by using an appropriate utility command. If it is not, put it back into RUN state by using the same utility command.
$<$ Estimate of the time required for a restoration>
If you restore approximately 22 MB of data (maximum save size) for both the LPU and CMU modules by using a personal computer with $1-\mathrm{GHz} \mathrm{CPU}$, the restoration will require approximately seven minutes. However, this time requirement varies depending on the performance of the machine you use.

- Backup and restoration using optional-module setting tools

It is a common practice to carry out a backup and a restore operation using the BACKUP RESTORE SYSTEM when a module(s) need to be replaced and when they are replaced, respectively. However, if the number of optional modules to be replaced is only one, you can carry out a backup and a restore operation using the optional-module setting tool for that module. To carry out a backup and a restore operation using the optional-module setting tool, use the F/D and parameter save capabilities of that tool. For details on the optional-module setting tool, refer to the optional-module manual that comes with an optional module.
As regards ET.NET and inter-CPU link modules, they require no backup and restore operations at all as long as the LPU module need not be replaced. This is because their settings are all stored in the LPU module's memory.

Table 3-2 Backup Areas Used by Optional-Module Setting Tools (1/2)

No.	Setting tool		Header storage location (address)	Content	Remarks
1	OD.RING/SD.LINK SYSTEM	Main	/0097 8002 to /0097 802E	Main-module-side installation info area	
		Sub	/009F 8002 to /009F 802E	Submodule-side installation info area	
2	J.NET SYSTEM	Main	/00A7 8008 to /00A7 FFFE	Main-module-side slave parameter table	
		Sub	/00AF 8008 to /00AF FFFE	Submodule-side slave parameter table	
3	IR.LINK SYSTEM	Main	/00A7 8008 to /00A7 FFFE	Main-module-side slave parameter table	
		Sub	/00AF 8008 to /00AF FFFE	Submodule-side slave parameter table	
4	FL.NET SYSTEM	Main	/00D4 1A00 to /00D4 1A33	Main-module-side local-node status table	
			/00D7 0020 to /00D7 004E	Main-module-side local-node initialization table	
			/00D7 0050 to /00D7 1E4E	Main-module-side other(participating)-node allotment table	
			/004B 0750 to /004B 0758	Main-module-side node name	
			/004B 0740 to /004B 0746	Main-module-side IP address, subnet mask	
		Sub	/00DC 1A00 to /00DC 1A33	Submodule-side local-node status table	
			/00DF 0020 to /00DF 004E	Submodule-side local-node initialization table	
			/00DF 0050 to /00DF 1E4E	Submodule-side other(participating)node allotment table	
			/004B 075A to /004B 0762	Submodule-side node name	
			/004B 0748 to /004B 074E	Submodule-side IP address, subnet mask	

Table 3-2 Backup Areas Used by Optional-Module Setting Tools (2/2)

No.	Setting tool		Header storage location (address)	Content	Remarks
5	D.NET SYSTEM	ch0	/00E3 0000 to /00E3 5AFE	Ch0-side parameter table, peer/slave parameter table	
			/00E3 6000 to /00E3 608E	Ch0-side slave operation table	
		ch1	/00E7 0000 to /00E7 5AFE	Ch1-side parameter table, peer/slave parameter table	
			/00E7 6000 to /00E7 608E	Ch1-side slave operation table	
		ch2	/00EB 0000 to /00EB 5AFE	Ch2-side parameter table, peer/slave parameter table	
			/00EB 6000 to /00EB 608E	Ch2-side slave operation table	
		ch3	/00EF 0000 to /00EF 5AFE	Ch3-side parameter table, peer/slave parameter table	
			/00EF 6000 to /00EF 608E	Ch3-side slave operation table	
6	EXTERNAL SERIAL LINK SYSTEM	ch0	/00F4 8100 to /00F4 81FE	Ch0-side LGB table	
		ch1	/00F5 8100 to /00F5 81FE	Ch1-side LGB table	
		ch2	/00F6 8100 to /00F6 81FE	Ch2-side LGB table	
		ch3	/00F7 8100 to /00F7 81FE	Ch3-side LGB table	
7	EQ.LINK SYSTEM	Main	/00D4 1A00 to /00D4 1A32	Main-module-side local-node status table	
			/00D7 0020 to /00D7 1E4E	Main-module-side local-node initialization table	
			/00D7 2058 to /00D7 2060	Main-module-side local-/remote-node initialization table	
			/00D7 2140 to /00D7 23FE	Main-module-side local-/remote-node area division table	
		Sub	/00DC 1A00 to /00DC 1A32	Submodule-side local-node status table	
			/00DF 0020 to /00DF 1E4E	Submodule-side local-node initialization table	
			/00DF 2058 to /00DF 2060	Submodule-side local-/remote-node initialization table	
			/00DF 2140 to /00DF 23FE	Submodule-side local-/remote-node area division table	

## 3 TECHNICAL SUPPORT INFORMATION

- Backup areas

The table below shows the memory addresses for modules that are subjected to backup operations.

Table 3-3 Backup Areas (1/2)

No.	Module (backup file name)		Backup address	Remarks
1	LPU   (backup1.wsvl)		/0010 0000 to (changeable)	(Note 1)
			/0040 1700 to /0040 171E	
			/0040 2000 to /0040 3FFE	
			/0047 0000 to /0047 1FFE	
			/0048 0000 to /0048 05FE	
			/0048 0800 to /0048 0FFE	
			/0048 1200 to /004C FFEE	
			/004D 0000 to /004F FFFE	
			/0048 0600 to /0048 07FE	
			/0040 1000 to /0040 11FE	
			/0048 1000 to /0048 11FE	
2	CMU   (backup2.wsvl)		/0300 0000 to /0307 FFFE	(Note 2)
			/0308 0000 to (changeable)	
			/2000 0000 to /200B 943E	(Note 3)
			/2800 D000 to /2800 00FE	
			/7C00 2000 to /7C00 200E	
			/3000 0000 to (changeable)	
			/4000 0000 to (changeable)	
			/5000 0000 to (changeable)	
			/6000 0000 to (changeable)	
3	OD.RING/SD.LINK   (backup3.wsvl)	Main module	/0097 8002 to /0097 802E	
		Submodule	/009F 8002 to /009F 802E	
4	J.NET/J.NET-INT/IR.LINK (backup4.wsvl)	Main module	/00A7 8008 to /00A7 FFFE	
		Submodule	/00AF 8008 to /00AF FFFE	

Table 3-3 Backup Areas (2/2)

No.	Module (backup file name)		Backup address	Remarks
5	FL.NET   (backup5.wsvl)	Main module	/00D4 1A00 to /00D4 1A32	
			/00D7 0050 to /00D7 1E4E	
			/00D7 0020 to /00D7 0048	
		Submodule	/00DC 1A00 to /00DC 1A32	
			/00DF 0050 to /00DF 1E4E	
			/00DF 0020 to /00DF 0048	
6	D.NET   (backup6.wsvl)	Channel 0	/00E3 0000 to /00E3 5AFE	
			/00E3 6000 to /00E3 608E	
		Channel 1	/00E7 0000 to /00E7 5AFE	
			/00E7 6000 to /00E7 608E	
		Channel 2	/00EB 0000 to /00EB 5AFE	
			/00EB 6000 to /00EB 608E	
		Channel 3	/00EF 0000 to /00EF 5AFE	
			/00EF 6000 to /00EF 608E	
7	RS-232C/RS-422   (backup7.wsvl)	Channel 0	/00F4 8100 to /00F4 81FE	
		Channel 1	/00F5 8100 to /00F5 81FE	
		Channel 2	/00F6 8100 to /00F6 81FE	
		Channel 3	/00F7 8100 to /00F7 81FE	
8	EQ.LINK   (Primary: backup8.wsvl   Standby: backup9.wsvl)	Main module	/00D4 1A00 to /00D4 1A32	
			/00D7 0020 to /00D7 1E4E	
			/00D7 2058 to /00D7 2060	
			/00D7 2140 to /00D7 23FE	
		Submodule	/00DC 1A00 to /00DC 1A32	
			/00DF 0020 to /00DF 1E4E	
			/00DF 2058 to /00DF 2060	
			/00DF 2140 to /00DF 23 FE	

Note 1: As this backup area, only the range of addresses actually used to store a ladder program's body, comment data, and user (arithmetic) functions' bodies is subjected to backup. The end address of this area is changeable in the range: /0010 4406 to /0016 7FFE
Note 2: These backup areas are defined only when HI-FLOW is stored in place. As the backup area from /0308 0000 onwards, in particular, only the range of addresses used to store an HIFLOW user program is subjected to backup. If the end address of this backup area is /0308 0000 , it indicates that an HI-FLOW user program is not used. In this case, this backup area is not subjected to backup.
The end address of this area is changeable in the range: /0308 0000 to /033F FFFE
Note 3: These backup areas are defined only when the RPDP (Real-Time Program Development System) is defined. The backup areas from / 30000000 onwards, /4000 0000 onwards, /5000 0000 onwards, and / 60000000 onwards, respectively, are changeable depending on the defined RPDP, and up to 16 MB of their total contents are subjected to backup.

### 3.5 Performance

Performance information for the S10V controller can be viewed on screen. To accomplish this, start up the S10V BASE SYSTEM by choosing [Start] - [Programs] - [Hitachi S10V] - [S10V BASE SYSTEM] on the personal computer connected with the S10V controller, and click the Performance button. Then, the [Performance] window appears which present the performance information. For details on the S10V BASE SYSTEM, refer to the description under "6 TOOLS" in the "BASIC MODULES (manual number SVE-1-100)."
(1) [Performance] window

The [Performance] window presents sequence cycle and CMU load percentage information, as shown below.


The table below is a list of the items displayed in the [Performance] window.

Table 3-4 Items Displayed in the [Performance] Window

Group	Item	Unit	Description
Sequence   Cycle	Current value	ms	The present value of combined ladder program and HI-FLOW process   execution time (Note)
	Maximum value	ms	The largest possible value of combined ladder program and HI-FLOW   process execution time (Note)
	Minimum value	ms	The smallest possible value of combined ladder program and HI-   FLOW process execution time (Note)
	Setting value	ms	The set value of the sequence cycle timer
	Current value	$\%$	The present value of CMU load percentage
	Maximum value	$\%$	The largest possible value of CMU load percentage
	Minimum value	$\%$	The smallest possible value of CMU load percentage
	Measurement time	sec	The measuring time of CMU load percentage

- Clear button (for sequence cycle):

Used to clear the current value, maximum value, and minimum value of sequence cycle and restart measurement. When the three values are cleared, they are displayed as zero (0).

- Clear button (for CMU load percentage):

Used to clear the current value, maximum value, and minimum value of CMU load percentage and restart measurement. When the three values are cleared, they are displayed as zero (0).

- Change Time button:

When clicked, displays the [Change Measurement Time] window to allow changing of the measurement time. In this window, you can set a new measurement time, which can later be displayed in the "Measurement time" box after confirmation.
In addition, this button also clears the current value, maximum value, and minimum value in the "CMU load percentage" group and restarts the measurement of CMU load percentage with the newly set measurement time value.

- Refresh button:

When clicked, displays the current values.

- OK button:

Used to exit the [Performance] window.

Note: The term "combined ladder program and HI-FLOW process execution time" refers to each of the shaded portions in the diagram below.

(2) [Change Measurement Time] window The [Change Measurement Time] window allows you to change the current value of CMU load percentage measurement time.


- [Measurement time] box:

Allows you to enter a new value of CMU load percentage measurement time expressed in seconds in the range 1 to 60 . This measurement time is defaulted to 1 . The entered value appears as a new default value when this window is displayed next time.

- OK button:

Used to confirm the value entered in the "Measurement time" box and exit the [Change Measurement Time] window.

- Cancel button:

Clicked to exit the [Change Measurement Time] window without changing the current measurement time value.

### 3.6 Address Space Maps

- Address space map of the LPU unit


Figure 3-1 Address Space Map of the LPU Unit

- Address space map to PIO-RAM bit area


Figure 3-2 Address Space Map to the PIO-RAM Bit Area

## 3 TECHNICAL SUPPORT INFORMATION

## Address space map to PIO-RAM word area

 subjected to backup.

Figure 3-3 Address Space Map to the PIO-RAM Word Area (1)

Address space map to PIO-RAM word area (continued from preceding page):


Figure 3-4 Address Space Map to the PIO-RAM Word Area (2)

## 3 TECHNICAL SUPPORT INFORMATION

- Address space map of the CMU unit

/0000 0000	LPU address space (same as the address space map of the LPU unit)		LPU address space
/0100 0000	NX user buffer area	4	
101100000	(Reserved)		
103000000	HI-FLOW address space		
104000000	(Reserved)		
10C00 0000	High-speed system bus address space		
/1800 0000	PCI address space		
/1C00 0000	(Reserved)		CMU address space (not accessible from the LPU)
120000000	MAP address space		
1280000	CPMS address space		
13000000	Task address space		
140000000	GLBR address space (read-only GLB)		
/5000 0000	GLBR   (read-/write-enabled GLB)		
16000000	IRSUB address space		
	(Reserved)		
/FFFF FFFF	System-use address space	-	

### 3.7 Registers

### 3.7.1 Ladder instructions and usable registers

The table below shows all registers usable in ladder instructions.

Table 3-5 Usable Registers (1/2)

$\checkmark$ : Usable register.
cu: Non-usable register.

Table 3-5 Usable Registers (2/2)

	Function name	Register name	Ladder symbols						Status after reset or power recovery
			$\begin{aligned} & -1 \\ & -1 \end{aligned}$	$-14-$ -11-	$-\infty$	-(S)-		$F$	
	Event register	E	$\checkmark$	cu	$\sqrt{ }$	cu	$\checkmark$	$\sqrt{ }$	Cleared
	Edge contact	V	cu	$\checkmark$	cu	cu	$\checkmark$	$\checkmark$	Cleared
	Zee register	Z	$\checkmark$	cu	$\checkmark$	cu	$\checkmark$	$\checkmark$	Cleared
	System register	S	$\checkmark$	cu	cu	cu	$\checkmark$	$\checkmark$	Initialized
	Shared-data register between HI-FLOW and ladder	J	$\checkmark$	cu	cu	cu	$\checkmark$	$\checkmark$	Cleared
		Q	$\checkmark$	cu	$\checkmark$	cu	$\checkmark$	$\checkmark$	Cleared
	Register between HI-FLOW processes	HH	cu	cu	cu	cu	cu	cu	Cleared
	Extension internal register	LB	$\checkmark$	cu	$\checkmark$	cu	$\checkmark$	$\checkmark$	Cleared
	Converter-specific internal register	LR	$\checkmark$	cu	$\checkmark$	cu	$\checkmark$	$\checkmark$	Cleared
	Converter-specific edge contact register	LV	cu	$\checkmark$	cu	cu	$\checkmark$	$\checkmark$	Cleared
	Input register (reserved for future use)	IW	cu	cu	cu	cu	$\checkmark$	$\checkmark$	Cleared
	Output register (reserved for future use)	OW	cu	cu	cu	cu	$\checkmark$	$\checkmark$	Cleared
	Internal register	BD	cu	cu	cu	cu	cu	$\checkmark$	Remaining unchanged
		BW (*)	cu	cu	cu	cu	cu	$\checkmark$	Depending on BD
	Function data register	DW	cu	cu	cu	cu	$\checkmark$	$\checkmark$	Remaining unchanged
	Function work register	FW	cu	cu	cu	cu	$\checkmark$	$\checkmark$	Remaining unchanged
	Extension function work register	LW	cu	cu	cu	cu	$\checkmark$	$\checkmark$	Cleared
	Long-word work register	LL	cu	cu	cu	cu	cu	$\checkmark$	Cleared
	Single-precision floatingpoint work register	LF	cu	cu	cu	cu	cu	$\checkmark$	Cleared
	Backup word work register	LX	cu	cu	cu	cu	$\checkmark$	$\checkmark$	Remaining unchanged
	Backup long-word work register	LM	cu	cu	cu	cu	cu	$\checkmark$	Remaining unchanged
	Backup single-precision floating-point work register	LG	cu	cu	cu	cu	cu	$\checkmark$	Remaining unchanged

$\checkmark$ : Usable register.
cu: Non-usable register.
(*) Accessed by indirect addressing.

### 3.7.2 Register numbers

The table below is a list of all register numbers that can be used in ladder programs. As shown, the range of usable register numbers depends on the types of registers accessed by their generic register names.

Table 3-6 Register Numbers (1/2)

No.	Register name	Register types accessed			
		Bit	Word	Long-word	Single-precision floating-point
1	X	X000 to XFFF	XW000 to XWFF0	XL000 to XLFE0	-
2	Y	Y000 to YFFF	YW000 to YWFF0	YL000 to YLFE0	-
3	R	R000 to RFFF	RW000 to RWFF0	RL000 to RLFE0	-
4	M	M000 to MFFF	MW000 to MWFF0	ML000 to MLFE0	-
5	A	A000 to AFFF	AW000 to AWFF0	AL000 to ALFE0	-
6	K	K000 to KFFF	KW000 to KWFF0	KL000 to KLFE0	-
7	T	T000 to T1FF	TW000 to TW1F0	TL000 to TL1E0	-
8	TS	-	TS000 to TS1FF	-	-
9	TC	-	TC000 to TC1FF	-	-
10	U	U000 to U0FF	UW000 to UW0F0	UL000 to UL0E0	-
11	US	-	US000 to US0FF	-	-
12	UC	-	UC000 to UC0FF	-	-
13	CU	CU00 to CUFF	-	-	-
14	CD	CD00 to CDFF	-	-	-
15	CR	CR00 to CRFF	-	-	-
16	C0	C000 to C0FF	CW000 to CW0F0	CL000 to CL0E0	-
17	CS	-	CS000 to CS0FF	-	-
18	CC	-	CC000 to CC0FF	-	-
19	G	G000 to GFFF	GW000 to GWFF0	GL000 to GLFE0	-
20	NM	NM01 to NMFF	-	-	-
21	NZ	NZ01 to NZFF	-	-	-
22	N0	N001 to N0FF	NW000 to NW0F0	NL000 to NL0E0	-

-: Not accessible.

## 3 TECHNICAL SUPPORT INFORMATION

Table 3-6 Register Numbers (2/2)

No.	Register name	Register types accessed			
		Bit	Word	Long-word	Single-precision floating-point
23	P	P001 to P080	PW000 to PW080	PL000 to PL060	-
24	E	E000 to EFFF	EW000 to EWFF0	EL000 to ELFE0	-
25	V	V000 to VFFF	VW000 to VWFF0	VL000 to VLFE0	-
26	Z	Z000 to Z3FF	ZW000 to ZW3F0	ZL000 to ZL3E0	-
27	S	S000 to SBFF	SW000 to SWBF0	ZL000 to ZLBE0	-
28	J	J000 to JFFF	JW000 to JWFF0	JL000 to JLFE0	-
29	Q	Q000 to QFFF	QW000 to QWFF0	QL000 to QLFE0	-
30	LB	LB0000 to LBFFFF	LBW0000 to LBWFFF0	LBL0000 to LBLFFE0	-
31	LR	LR0000 to LR0FFF	LRW0000 to LRW0FF0	LRL0000 to LRL0FE0	-
32	LV	LV0000 to LV0FFF	LVW0000 to LVW0FF0	LVL0000 to LVL0FE0	-
33	IW	-	IW000 to IWFFF	IL000 to ILFFE	-
34	OW	-	OW000 to OWFFF	OL000 to OLFFE	-
35	BD	-	-	BD000 to BD1FE	-
36	BW (*)	-	BW000 to BW1FE	BL000 to BL1FE	-
37	DW	-	DW000 to DWFFF	DL000 to DLFFE	-
38	FW	-	FW000 to FWBFF	FL000 to FLBFE	-
39	LW	-	LWW0000 to LWWFFFF	LWL0000 to   LWLFFFE	-
40	LL	-	-	LLL0000 to LLL1FFF	-
41	LF	-	-	-	LF0000 to LF1FFF
42	LX	-	LXW0000 to LXW3FFF	LXL0000 to LXL3FFE	-
43	LM	-	-	LML0000 to LML1FFF	-
44	LG	-	-	-	LG0000 to LG1FFF

-: Not accessible.
(*) Accessed by indirect addressing.

### 3.7.3 System registers

Range of numbers	000 to BFF

System registers are read-only registers reflecting the system's operation performed or other things relating to the system.

The table below is a list of all available system registers.

Table 3-7 System Registers

No.	Register numbers	
1	S000 to S00F	Arithmetic-function flag registers
2	S010 to S01F	Ladder program control registers
3	S020 to S02F	HI-FLOW application-instruction execution-result flag registers
4	S030 to S0FF	(Reserved for system use)
5	S100 to S15F	Ladder program control counter
6	S160 to S1FF	(Reserved for system use)
7	S200 to S20F	Time control registers
8	S210 to S27F	(Reserved for system use)
9	S280 to S2EF	Time setting registers
10	S2F0 to S2FF	(Reserved for system use)
11	S300 to S47F	Remote I/O status registers
12	S480 to S4FF	(Reserved for system use)
13	S500 to S6FF	Optional-module status registers
14	S700 to S8FF	(Reserved for system use)
15	S900 to S93F	Sequence-cycle scan-time registers
16	S940 to S97F	Ladder execution-time registers
17	S980 to S9BF	Optional-module status registers (D.NET)
18	S9C0 to S9FF	Ethernet communication result flag registers
19	SA00 to SA8F	Optional-module status registers (J.NET/IR.LINK)
20	SA90 to SAFF	(Reserved for system use)
21	SB00 to SB1F	LPU-unit I/O information registers
22	SB20 to SBEF	(Reserved for system use)
23	SBF0 to SBFF	LPU status registers
1		
10		

## 3 TECHNICAL SUPPORT INFORMATION

(1) Arithmetic-function flag registers

Arithmetic-function flag registers indicate the set/reset statuses of predefined flags that occur upon the execution of system arithmetic-function instructions. These registers cannot be referenced from the ladder circuit monitor and MCS functions (if an attempt is made to do so, the registers are always displayed as "OFF").

(2) Ladder program control registers


Timing chart:


Note: None of the above bit registers, S010 through S013, become ON in the event of a power outage.
(3) HI-FLOW application-instruction execution-result flag registers

HI-FLOW application-instruction execution-result flag registers indicate the statuses of predefined flags that occur upon the execution of HI-FLOW application instructions.

(4) Ladder program control registers

Ladder program control registers are counters that can be used in sequence control.

(MSB)		(LSB)
$2^{15}$		$2^{0}$
SW100	10-ms interval counter	$)$
SW110	100-ms interval counter	Zero-cleared when the LPU is manually reset
SW120	1-second interval counter	or power-on reset.
SW140	Sequence cycle counter	$\cdots$.-. ${ }^{\text {ero-cleared }}$ when the LPU makes a STOP-to-RUN transition.
SW150	Remote I/O cycle counter	...Zero-cleared when the remote I/O process makes a STOP-toRUN transition

- All the above counters start counting from 0 again when they overflow.
- Any of the above counters will have an error of approximately $\pm 10 \%$ because their precision depends on interrupts handled by the operating system (OS).
(5) Time control registers

Time control registers are provided as a means of controlling the setting of current time in the LPU. They are used when setting the current time in the LPU.

(MSB) ${ }^{15}$		(LSB)
		$2^{0}$
SW200	$1 / 0$ $1 / 0$ $1 / 0$	(Reserved for future extension)
		S202: Set data and start   (1: Set data and start; 0: Normal use)   S201: Stop timer   (1: Stop request already issued; 0 : No stop request needs to be issued)   S200: Timer updating in process   (1: Timer updating in process; 0 : Timer updating stopped)

## 3 TECHNICAL SUPPORT INFORMATION

(6) Time setting registers

Time setting registers are used to store values indicating the year, month, day of month, hours, minutes, seconds, and day of week. When you make time settings in the LPU, store time information in these registers. Data stored in these registers must be in binary format.

(MSB)		
	$2^{15}$	$8^{8} 2^{7} \quad 2^{0}$
SW280	(Unused)	Seconds
SW290	(Unused)	Minutes
SW2A0	(Unused)	Hours
SW2B0	(Unused)	Day of month
SW2C0	(Unused)	Month
SW2D0		
SW2E0	(Unused)	Day of week

Seconds: Must be in the range 0 to 59 .
Minutes: Must be in the range 0 to 59 .
Hours: Must be in the range 0 to 23 .
Day of month: Must be in the range 1 to 31 .
Month: Must be in the range 1 to 12.
Year: Must be in the range 1970 to 2069.
Day of week: Must be in the range 1 to 7 .
(1: Sun; 2: Mon; 3: Tue; 4: Wed; 5: Thu; 6: Fri; 7: Sat)
(7) Remote I/O status registers

Remote I/O status registers present remote I/O station information, such as station registered or not, timeout error detected or not, and fuse blown or not.
$<$ Register assignment>

S300	Registered   stations
S380	Timed-out   stations
S400	Fuse-blown   stations

- All stations that are currently connected to the communication line and that have thus far responded normally at least once have their associated registers set to $1 .\left({ }^{*}\right)$
- All registered stations in which a timeout error has been detected have their associated registers set to 1. (*)
- All registered stations in which a fuse-blown condition (DO module fuse blown) has been detected have their associated registers set to $1 .\left({ }^{*}\right)$
$\left({ }^{*}\right)$ One-to-one correspondence between stations and bits:

No.	X - or Y-number	Registered station	Timed-out station	Fuse-blown station
0	000 to 00F	S300	S380	S400
1	010 to 01F	S301	S381	S401
2	020 to 02F	S302	S382	S402
3	030 to 03F	S303	S383	S403
4	040 to 04F	S304	S384	S404
124	7 C 0 to 7CF	S37C	S3FC	S47C
125	7D0 to 7DF	S37D	S3FD	S47D
126	7 E 0 to 7EF	S37E	S3FE	S47E
127	7F0 to 7FF	S37F	S3FF	S47F

(8) Optional-module status registers

Optional-module status registers are used to store error information for inter-CPU links, external-equipment links, etc. As shown below, these registers are organized into four groups according to the module types used. Data is set in each group of registers by a system program provided for its associated module type. For details on the bit configuration unique to each type of optional module, refer to the user's manual on the optional module.
<Register assignment for optional modules>

S500	(Reserved for   system use)
S580	Inter-CPU link module   information
S5C0	RS-232C module   information
S640	(Reserved for   system use)
S6FF	

The above registers are zero-cleared when the S10V unit is power-on reset or the LPU module is manually or remotely reset.
(9) Sequence-cycle scan-time registers

Sequence-cycle scan-time registers are used to store the result of measurements of sequence cycles.

$$
(\mathrm{MSB})^{15} \quad \text { (LSB) }
$$



Note: The above average value is not stored in place until the 16th measurement is completed.
(10) Ladder execution-time registers

Ladder execution-time registers are used to store the result of measurements of ladder execution times. Where HI-FLOW is used, the ladder and the HI-FLOW execution time are added together and the result is stored in place.


Note: The above average value is not stored in place until the 16 th measurement is completed.
(11) Optional-module status registers (D.NET)

These optional-module status registers are used to store error information on errors detected in each D.NET module (one of channels 0 through 3). For details, refer to the "D.NET (manual number SVE-1-106)."

(MSB)	
	$2^{15}$
SW980	Channel-0 module error information
SW990	Channel- 1 module error information
SW9A0	
	Channel-2 module error information
SW9B0	Channel-3 module error information

(12) Optional-module status registers (J.NET/IR.LINK)

These optional-module status registers are used to store error information on errors detected in each J.NET or IR.LINK module (main or submodule). For details, refer to the "J.NET (manual number SVE-1-104)" and "J.NET-INT (manual number SVE-1-107)," or the "IR.LINK (manual number SVE-1-117)."

(13) LPU-unit I/O information registers

LPU-unit I/O information registers are used to store I/O unit information for the LPU module.
Each bit in the information is in one-to-one correspondence with one of the slots involved.

## Bit configuration for LPU unit I/O info:

> (MSB)

(*) PCT: Pulse counter.

Slot No.	Bit register		
	Error info	Mounting info	I/O type
0	SB00	SB08	SB10
1	SB01	SB09	SB11
2	SB02	SB0A	SB12
3	SB03	SB0B	SB13
4	SB04	SB0C	SB14
5	SB05	SB0D	SB15
6	SB06	SB0E	SB16
7	SB07	SB0F	SB17

(14) LPU status registers

LPU status registers indicates the current state of the LPU.

## LPU status bit configuration

(MSB)

|  | $2^{15}$ | $2^{14}$ | $2^{13}$ | $2^{12}$ | $2^{11}$ | $2^{10}$ | $2^{9}$ | $2^{8}$ | $2^{7}$ | $2^{6}$ | $2^{5}$ | $2^{4}$ | $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SWBFO | $1 / 0$ | $1 / 0$ | $*$ | $1 / 0$ | $1 / 0$ | $*$ | $1 / 0$ | $*$ | $1 / 0$ | $1 / 0$ | $1 / 0$ | $1 / 0$ | $*$ | $1 / 0$ | $1 / 0$ | 0 |
| Bit No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
|  | * Each of these bits is reserved for future extension. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


Bit No.	Bit register No.	Meanings of bits	
		ON (=1)	OFF (=0)
0	SBF0	Currently in STOP state.	Currently in RUN state.
1	SBF1	Simulation currently in process.	Currently running normally.
2	SBF2	(Reserved for future extension)	
3	SBF3	Protection switch currently in ON state.	Protection switch currently in OFF state.
4	SBF4	Remote I/O operation currently in progress.	Remote I/O operation currently stopped.
5	SBF5	(Reserved for future extension)	
6	SBF6	Ladder-rewriting process currently in progress.	Ladder-rewriting process completed.
7	SBF7	(Reserved for future extension)	
8	SBF8	CELL error (*1) warning.	CELL normal.
9	SBF9	Timed-out station existent.	No timed-out station existent.
A	SBFA	Fuse-blown station existent.	No fuse-blown station existent.
B	SBFB	Optional-module error (*2) detected.	No optional-module error (*2) detected.
C	SBFC	(Reserved for future extension)	
D	SBFD	Zero-cleared in a general (power-on) reset (GR) or manual/remote reset.	
E	SBFE	LPU currently down.	LPU currently up and running normally.
F	SBFF	-	LPU's OS currently running.

(*1) The CELL error is a "battery low" condition of the memory backup battery provided in the LPU.
(*2) The optional-module error is a parity error detected during accessing the internal memory of the optional module from the LPU.

## 3 TECHNICAL SUPPORT INFORMATION

(15) Ethernet communication result flag registers

Ethernet communication result flag registers are used to store special flags for indicating the result of execution of Ethernet communication instructions.
Execution results are flagged in the system registers S9C0 through S9FF according to the management numbers, which are predefined in one-to-one correspondence with all available sockets. When the execution of an Ethernet communication instruction is terminated normally or abnormally, the result is flagged by setting the system register associated with the management number to 0 or 1 , respectively.

Register type		Management number	Remarks
Word	Bit		
SW9C0	S9C0	1	Provided for CMU   Ethernet communications.
	S9C1	2	
	S	S	
	S9CE	15	
	S9CF	16	
SW9D0	S9D0	17	Provided for ET.NET (main module) Ethernet communications.
	S9D1	18	
	S	s	
	S9DE	31	
	S9DF	32	
SW9E0	S9E0	33	Provided for ET.NET (submodule) Ethernet communications.
	S9E1	34	
	S	s	
	S9EE	47	
	S9EF	48	
SW9F0	S9F0	(Reserved for future extension)	
	S		
	S9FF		

### 3.8 Memory Maps for Optional Modules

As shown below, optional modules are mapped into memory, starting from the address / 800000 .
Address
/000000
/80000

/8800 | ET.NET/SV.LINK |
| :---: |
| (main module) |

/1000000

## 3 TECHNICAL SUPPORT INFORMATION

- Memory map for the ET.NET (model LQE520) module

- Memory map for the SV.LINK (model LQE521) module



## 3 TECHNICAL SUPPORT INFORMATION

- Memory map for the OD.RING (model LQE510/515)/SD.LINK (model LQE530) modules

Main module /900000	Submodule /980000		
		$\mu \mathrm{program}$	
/940000	/9C0000	(Reserved for system use)	
/940400	/9C0400	Error freeze table	
/940500	/9C0500	Transmission/reception info table	
/940530	/9C0530	Station management data	
/940D30	/9C0D30	Timeout table	
/940E30	/9C0E30	T/M info	
/940ED0	/9C0ED0	(Reserved for system use)	
/940FF0	19C0FF0	Communication trace area	
/945000	/9C5000		
		Word area	
/947000	/9C7000		
		(Reserved for system use)	
/980000	/A00000		

- Memory map for the J.NET (model LQE540), J.NET-INT (model LQE545), and IR.LINK (model LQE546) modules

- Memory map for the FL.NET (model LQE500 or LQE502) module

- Memory map for the EQ.LINK (model LQE701) module



## 3 TECHNICAL SUPPORT INFORMATION

- Memory map for the D.NET (model LQE570/575) module

- Memory map for the RS-232C/422 (model LQE560/565) module



### 3.9 FL.NET (Model LQE500/LQE502) Error Information

- Error message data table

The error message table is a data table provided in the FL.NET module and used as follows: If a message is received as a response to a message request issued by the local node and is found abnormal, its message data is stored in the error message table.
The information given below is the detailed specification of the error message table.

Main module	Submodule	$2^{0}$
0xD41380	0xDC1380	Total error message count
0xD41382	0xDC1382	Sending node number
0xD41384	0xDC1384	Received TCD
0xD41386	0xDC1386	Error message word count (in bytes)
$0 x D 41388$	$0 x D C 1388$	Error code data section


Item	Description
Total error message   count	Total number of abnormal response messages received after   power-up
Sending node number	Node number of the sending node from which the (latest)   abnormal response message is received.
Received TCD	TCD number of the (latest) abnormal response message   received
Error message word   count	Size in bytes of the data section of the (latest) abnormal   response message received (error code size).
Error code data section	Memory area in which the data section (error code) of the   (latest) abnormal response message received is stored. This   area can contain up to 1024 bytes of data.

Note: If an abnormal response message is stored in the error message table, and an additional abnormal response message is received, then the total error message count is increased by one, and the existing error message information is overwritten with the new information.

- Error codes for C-mode handler- and arithmetic function-detected errors

The table below enumerates all error codes that are returned when errors are detected in requests issued from C-mode handlers and arithmetic functions to the FL.NET module. In addition to these error codes, the table also provides information on the error causes and the user actions required to solve the problems.

Error code	Brief description	Cause	Required action
$0 \times 0000$	Normal end of message	-	
$0 \times 0001$	Message response error	An abnormal response message is   received from the specified node.	The content of the received   abnormal response message is   stored in the error message table.   Check the condition of the specified   node by referring to the manual   supplied with the specified node.
0x0002	Non-supported   message	The specified node does not   support the user-requested message   function.	Do not issue any non-supported   message to the node.
0xFE00	Parameter error	A user-specified parameter is in   error. Although a transparent   message reception request is issued,   no transparent message is already   received.	Check the parameters used in the   issued request.   A transparent message reception   request may be issued only when   such a message is already received.
0xFE01	Local node not   connected yet	The FL.NET module is currently   not a participant in the network.	Issue a request when the FL.NET   module is a participant of the   network.
0xFE02	Specified node not   connected yet	The user-specified node number   does not identify any currently   participating node in the network.	Specify only the node number of a   currently participating node in the   network.
0xFE03	Processing of some   other message is in   progress.	A request issued this time is not   acceptable, because the previously   issued request is currently under   processing.	Issue the request again after the   processing of the previously issued   request has been completed.
0xFE04	No message ACK   response received yet	No ACK response is received yet   from the specified node.	Module failure is conceivable.   Replace the module.
0xFE06	No data received	Although 30 seconds have elapsed   sine the last issuance of a message   request to the specified node, a   response to that message request   has not been received.	Module failure is conceivable.   Replace the module.

## 3 TECHNICAL SUPPORT INFORMATION

(2/2)

Error code	Brief description	Cause	Required action
0xFE08	ACK reception   sequence-number error	An ACK response containing a   sequence-number error is received   from the specified node.	Module failure is conceivable.   Replace the module.
0xFE09	ACK reception   sequence-number   version error	An ACK response containing a   sequence-number version error is   received from the specified node.	Message queue full   0xFE12
The message queue of the specified   node is full, so the specified node is   unable to receive any more   requests.	Wait for a while and then issue the   request again. Alternatively,   reduce the number of requests   issued to the specified node.		
0xFE13	Initialization error	The specified node has not finished   initialization for message   processing.	Wait for a while and then issue the   request again.
0xFE16	Message size error	The specified node has reported   that the size of a message requested   by the local node is abnormal.	Module failure is conceivable.   Replace the module.
0xF0XX   or   0xFFXX	Driver abnormality	An abnormality is detected in the   driver in the transmission of a user-   requested message	

### 3.10 OD.RING (Model LQE510/515) and SD.LINK (Model LQE530)

 Communication TracesThe OD.RING and SD.LINK modules are capable of tracing communications and their details. By using this capability, you can generate trace data and use it for troubleshooting.
(1) Trace buffer structure

The trace buffer used consists of an 8-word trace control table and 256 cases ( 32 words per case) of trace data, as shown below. In this buffer, trace data is stored cyclically by means of a pointer.


Trace data is stored in the trace buffer sequentially, starting from the case \#0 area. When trace data is stored in the last case area (case \#255), any remaining trace data is stored in the case \#0 area onwards again.

## 3 TECHNICAL SUPPORT INFORMATION

## (2) Trace control table

The trace control table consists of eight words, as shown below.

Main module /940FF0	Submodule   /9COFF0	(1) Perform/Stop
/940FF2	/9C0FF2	(Unused)
/940FF4	/9C0FF4	- (2) Trace target address
/940FF8	/9C0FF8	(3) Mask data
/940FFA	/9C0FFA	(4) Comparison data
1940FFC	19COFFC	(5) Pointer
1940FFE	19C0FFE	(Unused)

## (1) Perform/Stop

This table entry is used to set one of the following directives to the tracing capability:
0 : Stop tracing.
1: Perform tracing continuously until a given condition is met.
2: Perform tracing continuously until a given condition is met or an error occurs.
Upon a power recovery or the completion of a reset, this item is automatically set to " 2 ".
If an error occurs or a given tracing condition is met, the tracing is automatically stopped and the item is set to " 0 ".
(2) Trace target address

This specifies the starting address of a target area for conditional tracing.
(3) Mask data

This specifies mask data for conditional tracing. The entry is used to mask out only 0 -bits in bit data.
(4) Comparison data

This entry is used in conditional tracing. It is compared with the result of ANDing of the trace target address (2) and mask data. If they match, this means that the condition is met.
(5) Pointer

This entry points to the next case area in which to store trace data. The latest trace data stored is located at the address pointed to by the pointer minus 1 ( 255 if the pointer value is $0)$.
<Usage example 1>
Assume that G002 must always be equal to 1 , and that, if it is set equal to 0 , tracing needs to be stopped. Then, set the following entries in the trace control table.

<Usage example 2>
Assume that FW000 must always be equal to 1234, and that, if FW000 is set equal to 1111, tracing needs to be stopped. Then, set the following entries in the trace control table.


## 3 TECHNICAL SUPPORT INFORMATION

(3) Trace data

The trace data for each case of tracing consists of 32 words, as shown below.

<Details of frame header portion>

	158	7
/04	Destination CPL No.	Source CPL No.
/06	Entire-frame	byte count
/08	Bit data b	te count
/0A	Word data	byte count
/OC	Event data	byte count
/OE	CPU	atus
/10	Bit area	ddress
/14	Byte area	address

(4) Trace events and processes performed on their occurrence

The table below shows the relationships between events causing the generation of trace data and processes performed on the occurrence of the events.

Event	Condition   testing	Stop on error	Trace factor	Error status	Frame   information
Start of transmission	Performed	Not performed	Effective	Insignificant	Significant
Transmission terminated normally	Not performed	Not performed	Effective	Insignificant	Insignificant
Transmission terminated on error	Not performed	Performed	Effective	Significant	Insignificant
Transmission timed out	Not performed	Performed	Effective	Insignificant	Insignificant
Reception started	Not performed	Not performed	Effective	Insignificant	Insignificant
Reception terminated normally	Performed	Not performed	Effective	Insignificant	Significant
Reception terminated on error	Performed	Performed	Effective	Significant	Significant
Reception timed out	Not performed	Performed	Effective	Significant	Significant

- Condition testing

Conditions are tested and, if they are satisfied, tracing is terminated, the fact being flagged in the trace factor.

- Termination on error

If the "perform/stop" entry in the table is set equal to 2 , communication tracing is terminated on the occurrence of an error.

- Trace factor

The "trace factor" entry in the table consists of flags to indicate a variety of causes of trace data generation:


- Error status
<Error status of transmission>



## <Error status of reception>



## NOTE

The error status is set to "FFFF" when a reception time-out error is detected.

The table below sets forth the details of the error status.

Transmission   /Reception	Error name	
Transmission	Underrun	Whror description   Reception
	DPLL error	Non-octet frame
	Frame length violation	In a coding mode in which transitions occur with regard to each bit, a   missing transition is detected, resulting in setting of the DE bit.
	An illegal frame length is detected which is larger than its maximum   permitted value defined for this channel.	
	Abort sequence	An illegal frame is received whose length in bits is not exactly divisible by   8.
	CRC-detected error	Seven or more 1s are received consecutively during frame reception.
	Overrun	An overror is detected in a frame by a CRC.
	Reception time-out error	An attempt is made to transmit or receive more frames than permitted.

## - Frame information

Frame information is stored in the predetermined locations.

### 3.11 ET.NET (Model LQE520) Error Information

### 3.11.1 Error codes from the socket handler

The table below enumerates all error codes that are returned from the socket handler to report on the occurrence of errors. In addition to these error codes, the table also provides information on the error causes and the user actions required to solve the problems.

Table 3-8 Error Codes from the Socket Handler (LQE520) (1/3)

Error code	Brief description	Cause	Required action
F000	Connection not established yet	A connection is not established yet, or the port is released when the handler is called.	Establish a connection by calling tcp_open() or tcp_popen(), and then call the handler.
F002	FIN received	An FIN is received when the handler is called.	Clear the connection by calling tcp_close() and then re-establish a connection by calling tcp_open() or tcp_popen().
F010	Invalid socket ID	- The socket ID is not within the permitted range (for TCP, $1 \leq \mathrm{ID} \leq 15$; for UDP, $/ 20 \leq$ ID $\leq / 27$ ); or   - An unused socket ID or an already released socket ID is specified; or   - A connection is not made or opened yet (only in tcp_accept()).	Check the user program (e.g., check if a return value from tcp_open() or tcp_popen() is used as the socket ID).
F011	Socket count limit exceeded	An attempt has been made to register more sockets than permitted. (For TCP, up to 12; for UDP, up to 8.)	Close any unused sockets (by calling tcp_close() or udp_close()) and then reestablish a connection by calling tcp_open() or tcp_popen().
F012	Socket driver timed out	- No response has been obtained from the socket driver within a fixed time period; or   - The requested transmission is timed out due to a "send window full" condition or some other cause (only in tcp_send()).	Clear the connection by calling tcp_close(), and then try to re-establish a connection by calling tcp_open() or tcp_popen(). If communication cannot be achieved by repeating such an attempt, check if the connectors, cables, and remote station involved are all functioning normally. If the same error has occurred in tcp_close(), clear the connection by calling tcp_abort() and then re-establish a connection by calling tcp_open() or tcp_popen().
F013	Module stopped	A socket driver has not been able to be initialized completely within 100 seconds when the handler was called.	Call tcp_close() repeatedly as long as the application does not complain. Then, try to re-establish a connection by calling tcp_open() or tcp_popen().

Table 3-8 Error Codes from the Socket Handler (LQE520) (2/3)

Error code	Brief description	Cause	Required action
F020	Illegal send data length	A send data length used exceeded the permitted limit (for TCP, $1 \leq$ data length $\leq 4096$; for UDP, $1 \leq$ data length $\leq 1472$ ).	Check the user program (to see if all the send data lengths specified are within the stated limits).
F021	Illegal receive data length	A receive data length used exceeded the permitted limit ( $1 \leq$ data length $\leq 4096$ ).	Check the user program (to see if all the receive data lengths specified are within the stated limits).
F0FF	Port released	- A port has been released (due to an RST reception) when the handler was called (this error is related to tcp_open()); or   - A port was already released when the handler was called (this error is related to tcp_send() or tcp_receive()).	- Re-establish a connection by calling tcp_open() or tcp_popen(); or   - Clear the connection by calling tcp_close(), and then re-establish a connection by calling tcp_open() or tcp_popen().
FFF0	Invalid address	- As the IP address and/or port number of a destination station, zero values ( 0 s) are used in both udp_open() and udp_send(); or   - An Ethernet-level error (e.g., a collision) has occurred in udp_send(); or   - An attempt has been made to send data to a remote station for which no routing information is set yet (this error is only related to udp_send()).	- Check the user program; or   - When the traffic decreases, try udp_send() again; or   - Check the existing routing information.
FFF3	Illegal parameter	An illegal parameter has been detected.	Check the user program.
FFF5	Connection operation timed out	No response has been obtained from the remote station.	Clear the connection by calling tcp_close(), and then try to re-establish a connection by calling tcp_open() or tcp_popen(). If communication cannot be achieved by repeating such an attempt, check if the connectors, cables, and remote station involved are all functioning normally.
FFF6	Already closed	A command has been issued for a socket ID whose connection was already terminated (by closing or aborting).	Re-establish a connection by calling tcp_open() or tcp_popen().
FFF8	FIN received	An FIN has been received from the remote station.	Close the socket by calling tcp_close().
FFFA	Connection forcibly terminated	The connection has been forcibly terminated by (transmission of an RST from) the remote station. (tcp_receive() was called after the RST reception.)	Clear the connection by calling tcp_close(), and then re-establish a connection by calling tcp_open() or tcp_popen().
FFFC	Illegal net handle	An attempt has been made to transmit or receive data with a handle number not opened in the TCP or UDP. This kind of error may occur when an RST is received (in tcp_receive() waiting for data to be received).	Close the socket by calling tcp_close(), and then re-establish a connection by calling tcp_open() or tcp_popen().

## 3 TECHNICAL SUPPORT INFORMATION

Table 3-8 Error Codes from the Socket Handler (LQE520) (3/3)

Error   code	Brief   description	Cause	Required action
FFFD	Duplicate   socket	The same socket (using the remote   station's IP address or port number, or the   local station's port number) is already   existent.	Check the user program.
FFFE	Illegal control   block	The maximum permitted number of usable   sockets has been exceeded.	Close unused sockets (by calling tcp_close()   or udp_close()) and re-establish a   connection by calling tcp_open() or   tcp_popen().
FFFF	Internal buffer   full	- The send buffer has become full (in   udp_send()); or   - Internal registered area has become full   (in route_add() or arp_list()).	• Wait for a while and then call udp_send()   again; or   - Delete unused registration information and   then call it again.

### 3.11.2 Routing information setting error table

When routing-information setting ends up with an error, the corresponding error code is set in the following table:


No.	Error code	Description	User number   duplicated or not
1	$/ 0010$	The remote station's IP address is duplicated with the local station's IP address.	Not duplicated
2	$/ 0011$	The remote station's IP address is duplicated with another gateway's IP address.	Duplicated
3	$/ 0012$	The remote station's IP address is duplicated with another remote station's IP   address.	Duplicated
4	$/ 0013$	The same network address as the local station's is set as the network address in   the remote station's IP address.	Not duplicated
5	$/ 0014$	The network address in the remote station's IP address is duplicated with the   network address in another remote station's IP address.	Duplicated
6	$/ 0016$	The remote station's IP address is 255.255 .255 .255.	Not duplicated
7	$/ 0020$	The gateway's IP address is duplicated with the local station's IP address.	Not duplicated
8	$/ 0022$	The gateway's IP address is duplicated with another remote station's IP address.	Duplicated
9	$/ 0023$	The same network address as the local station's is set as the network address in   a gateway's IP address.	Not duplicated
10	$/ 0024$	The network address in a gateway's IP address is duplicated with the network   address in another remote station's IP address.	Duplicated
11	$/ 0026$	The gateway’s IP address is 255.255.255.255.	Not duplicated
12	$/ 0030$	The subnetwork identified by a gateway's IP address matches the subnetwork   of the local station.	Not duplicated

## 3 TECHNICAL SUPPORT INFORMATION

### 3.12 SV.LINK (Model LQE521) Error Information

Parameter setting and communication errors, if detected, are reported by setting error codes in the status register area (BD000). These error codes are listed in the table below.

No.	Error name	Erro	code	Required action
		Upper word	Lower word	
1	Control register setting error	H1100	H0000	A parameter whose set value is in error is detected. Check the parameter's set value by referring to the description under " 5.4 Status and Communication Parameter Areas" in the "SV.LINK (manual number SVE-1-116)," and set the parameter correctly. Then, reset the controller, or turn off the power to the controller and back on again.
2	Communication response wait time setting error	H1101	H0000	
3	Communication retry count setting error	H1102	H0000	
4	Cyclic-communication protocol setting error	H1103	H0000	
5	Remote-station IP address setting error	H1104	H0000	
6	Bit-reversal setting error	H1105	H0000	
7	Module-number setting error	H1106	H0000	
8	Local-station send/receive starting-address setting error	H1107	H0000	
9	Remote-station send/receive starting-address setting error	H1108	H0000	
10	Bits/word mismatch error	H1109	H0000	
11	Send/receive data size setting error	H110A	H0000	
12	Port opening error	H1200	Hxxxx	Take an appropriate action according to the information provided in the table below. Then, if the same error recurs, replace the SV.LINK module. Here, note that the digits "xxxx" in the lower word represents an internal error code. For details, see the table below.
13	Port closing error	H1201	Hxxxx	
14	Data transmission error in cyclic communication	H2301	Hxxxx	
15	Data reception error in cyclic communication	H2302	Hxxxx	
16	Timeout error in cyclic communication	H2303	H0000	MELSEC is stopped, or the set value of wait time (BD009) is too small. Make the correct setting.
17	Data size error in cyclic communication	H2304	H0000	The send/receive word count is not identical between the S10V and MELSEC controllers. Make the correct setting.
18	Response error in cyclic communication	H2305	H0000	A problem is found in the way in which communication is performed. Check the user program running on the MELSEC side.

Internal error code (xxxx in the above table) of the SV.LINK module

Error   code	Brief   description	Cause	Required action
0xFFF0	Address or   network   error	An attempt is made to transmit data to   the local station.	Check the remote station's IP address setting   (BD00D), and set the correct IP address.
	An Ethernet-level error (e.g., collision)   has occurred in data transmission.	Check if any of the connectors, cable, and remote   station is abnormal. Check, also, if there is any   possibility of noise interference with the cable. If   so, correct the cable laying and/or wiring.	
		The cable is disconnected.	Check the cable.

The error code (BD000) in the status register area described above is cleared to zero ( 0 ) when an error recovery is made by, for instance, communication retries. Any error(s) that occurred in the past can be identified by referencing the error code trace area shown below. This trace area can contain information on up to 16 past error codes reported. If more than 16 errors occurred in the past, the trace area has been overwritten with the new error information, starting from the oldest error information in the trace area. In addition, this trace area is cleared when the controller is reset or the power to the controller is turned off and back on again.

## Error code trace area

Address (submodule)		Case number for which to write trace data to th associated trace area next (0 to 15).
0x873B10(0x8F3B10)	Write pointer	
+0x02	(Reserved for future extension)	
+0x04	Error code (long word) Case No. 0	
+0x08	Error code   Case No. 1	
+0x0A	Error code Case No. 2	
	:	
+0x40	Error code Case No. 15	
+0x44		

### 3.13 J.NET (Model LQE541), J.NET-INT (Model LQE547), and IR.LINK (Model LQE548) Trace Information

### 3.13.1 Command and response buffers

- Command buffer

In the information given below, the "Main module [N1]" stands for the IR.LINK module.

Main module		Submodule				
[N1]	[ N 2$]$	[N1]	[N2]			$\underline{-20}$
/A44110	IA46310	/AC4110	/AC6310	Station ID $=01$	+000	CFLAG
/A44220	/A46420	IAC4220	/AC6420	Station ID $=02$	1	-
IA44330	IA46530	IAC4330	IAC6530	Station ID $=03$	2	Return code (H)
IA44440	IA46640	IAC4440	/AC6640	Station ID = 04	3	(L)
IA44550	IA46750	IAC4550	IAC6750	Station ID $=05$	4	Station number
/A44660	/A46860	IAC4660	/AC6860	Station ID = 06	5	
/A44770	/A46970	IAC4770	/AC6970	Station ID = 07	$6$	(Unused; 4 bytes)
/A44880	/A46A80	IAC4880	IAC6A80	Station ID $=08$	$7$	(Unused, 4 bytes)
IA44990	/A46B90	IAC4990	/AC6B90	Station ID = 09	8	
IA44AAO	IA46CA0	IAC4AAO	IAC6CAO	Station ID = 0A	9	Service code
IA44BB0	IA46DB0	IAC4BB0	IAC6DB0	Station ID = 0B	A	Data length (H)
IA44CC0	IA46EC0	IAC4CC0	IAC6EC0	Station ID = OC	B	(L)
IA44DD0	IA46FD0	IAC4DD0	IAC6FDO	Station ID $=0 \mathrm{D}$	C	
IA44EE0	IA470E0	IAC4EE0	/AC70E0	Station ID $=0 \mathrm{E}$		
IA44FF0	/A471F0	IAC4FF0	/AC71F0	Station ID $=0 \mathrm{~F}$		ax. of 250 bytes)
/A45100	/A47300	/AC5100	/AC7300	Station ID = 10		
/A45210	/A47410	/AC5210	/AC7410	Station ID $=11$	/105	
/A45320	/A47520	/AC5320	/AC7520	Station ID $=12$	/106	
/A45430	/A47630	/AC5430	IAC7630	Station ID $=13$		nused; 10 bytes)
/A45540	/A47740	IAC5540	/AC7740	Station ID $=14$	/10F	
/A45650	/A47850	/AC5650	/AC7850	Station ID $=15$		
/A45760	/A47960	/AC5760	/AC7960	Station ID $=16$		
/A45870	IA47A70	/AC5870	IAC7A70	Station ID = 17		
/A45980	/A47B80	/AC5980	IAC7B80	Station ID $=18$		
/A45A90	/A47C90	/AC5A90	IAC7C90	Station ID = 19		
IA45BA0	IA47DA0	IAC5BAO	IAC7DA0	Station ID $=1 \mathrm{~A}$		
IA45CB0	IA47EB0	IAC5CBo	IAC7EB0	Station ID $=1 \mathrm{~B}$		
IA45DC0	IA47FC0	IAC5DC0	IAC7FC0	Station ID = 1C		
IA45ED0	IA480D0	IAC5ED0	IAC80D0	Station ID = 1D		
IA45FE0	/A481E0	IAC5FE0	/AC81E0	Station ID $=1 \mathrm{E}$		
IA460F0	IA482F0	/AC60F0	/AC82F0	Station ID $=1 \mathrm{~F}$		

- Response buffer

In the information given below, the "Main module [N1]" stands for the IR.LINK module.

Main module		Submodule			$2^{7}-$	
[ N 1 ]	[ N 2$]$	[ N 1 ]	[ N 2$]$			
/A48510	/A4A710	/AC8510	IACA710	Station ID $=01$	+000	CFLAG
IA48620	IA4A820	IAC8620	IACA820	Station ID $=02$	1	-
/A48730	IA4A930	/AC8730	IACA930	Station ID = 03	2	Return code (H)
/A48840	IA4AA40	/AC8840	IACAA40	Station ID $=04$	3	(L)
/A48950	/A4AB50	/AC8950	IACAB50	Station ID $=05$	4	Station number
IA48A60	IA4AC60	/AC8A60	IACAC60	Station ID $=06$	5	
/A48B70	IA4AD70	/AC8B70	IACAD70	Station ID $=07$	$6$	
IA48C80	IA4AE80	/AC8C80	IACAE80	Station ID $=08$	$7$	d,
/A48D90	IA4AF90	/AC8D90	IACAF90	Station ID = 09	8	
IA48EA0	IA4B0AO	IAC8EAO	IACBOAO	Station ID $=0 \mathrm{~A}$	9	Service code
IA48FB0	IA4B1B0	IAC8FB0	IACB1B0	Station ID = 0B	A	Data length (H)
IA490C0	IA4B2C0	IAC90Co	IACB2C0	Station ID = 0C	B	(L)
IA491D0	IA4B3D0	/AC91D0	IACB3D0	Station ID = 0D	C	
IA492E0	IA4B4E0	/AC92E0	IACB4E0	Station ID = 0E		
IA493F0	IA4B5F0	/AC93F0	/ACB5F0	Station ID $=0 \mathrm{~F}$		Data
/A49500	/A4B700	/AC9500	/ACB700	Station ID $=10$		
/A49610	/A4B810	/AC9610	/ACB810	Station ID $=11$	/105	
/A49720	/A4B920	/AC9720	/ACB920	Station ID $=12$	/106	
/A49830	IA4BA30	/AC9830	IACBA30	Station ID $=13$		Unused; 10 bytes)
/A49940	/A4BB40	/AC9940	/ACBB40	Station ID $=14$	/10F	
/A49A50	IA4BC50	IAC9A50	/ACBC50	Station ID $=15$		
/A49B60	IA4BD60	/AC9B60	IACBD60	Station ID $=16$		
IA49C70	IA4BE70	/AC9C70	/ACBE70	Station ID $=17$		
IA49D80	IA4BF80	/AC9D80	/ACBF80	Station ID $=18$		
/A49E90	IA4C090	/AC9E90	/ACC090	Station ID $=19$		
IA49FAO	IA4C1A0	lac9Fao	IACC1A0	Station ID $=1 \mathrm{~A}$		
IA4A0B0	IA4C2B0	IACAOBO	IACC2B0	Station ID $=1 \mathrm{~B}$		
/A4A1C0	IA4C3C0	IACA1C0	IACC3C0	Station ID = 1C		
IA4A2D0	IA4C4D0	IACA2D0	IACC4DO	Station ID = 1D		
IA4A3E0	IA4C5E0	IACA3EO	IACC5E0	Station ID $=1 \mathrm{E}$		
IA4A4F0	IA4C6F0	IACA4FO	IACC6FO	Station ID = 1F		

## 3 TECHNICAL SUPPORT INFORMATION

### 3.13.2 Data send and data receive buffers

- Data send buffer

In the information given below, the "Main module [N1]" stands for the IR.LINK module.

Main module		Submodule			$2^{7}-\longrightarrow 2^{0}$	
[ N 1$]$	[ N 2$]$	[N1]	[ N 2$]$			
/A55220	/A59620	/AD5220	/AD9620	Station ID = 01	+000	Send data length (H)
IA55440	/A59840	IAD5440	IAD9840	Station ID $=02$	1	(L)
/A55660	/A59A60	/AD5660	/AD9A60	Station ID = 03	2	Control flag (H)
/A55880	/A59C80	IAD5880	/AD9C80	Station ID $=04$	3	(L)
IA55AA0	IA59EA0	IAD5AA0	IAD9EA0	Station ID $=05$	4	Error code (H)
IA55CC0	IA5A0C0	IAD5CC0	IADAOC0	Station ID $=06$	5	(L)
/A55EE0	IA5A2E0	IAD5EE0	IADA2E0	Station ID $=07$	6	
/A56100	/A5A500	/AD6100	/ADA500	Station ID $=08$	$7$	
/A56320	/A5A720	/AD6320	/ADA720	Station ID $=09$	$8$	, 4 bytes)
IA56540	/A5A940	IAD6540	IADA940	Station ID = 0A	9	
/A56760	/A5AB60	/AD6760	/ADAB60	Station ID = 0B	A	
/A56980	/A5AD80	/AD6980	IADAD80	Station ID = 0C		
IA56BA0	IA5AFA0	IAD6BA0	IADAFA0	Station ID = 0D		
/A56DC0	IA5B1C0	IAD6DC0	IADB1C0	Station ID $=0 \mathrm{E}$		
/A56FE0	/A5B3E0	IAD6FE0	IADB3E0	Station ID $=0 \mathrm{~F}$		
/A57200	/A5B600	/AD7200	/ADB600	Station ID $=10$		
IA57420	/A5B820	/AD7420	/ADB820	Station ID $=11$	/209	
/A57640	IA5BA40	/AD7640	IADBA40	Station ID $=12$	/20A	
/A57860	/A5BC60	/AD7860	/ADBC60	Station ID $=13$		(Unused; 22 bytes)
/A57A80	/A5BE80	/AD7A80	/ADBE80	Station ID $=14$	/21F	
IA57CA0	IA5C0A0	IAD7CA0	IADC0AO	Station ID $=15$		
IA57EC0	IA5C2C0	IAD7EC0	IADC2C0	Station ID $=16$		
/A580E0	IA5C4E0	IAD80E0	IADC4E0	Station ID $=17$		
/A58300	/A5C700	/AD8300	/ADC700	Station ID $=18$		
/A58520	/A5C920	/AD8520	/ADC920	Station ID $=19$		
/A58740	IA5CB40	/AD8740	IADCB40	Station ID $=1 \mathrm{~A}$		
/A58960	IA5CD60	/AD8960	/ADCD60	Station ID $=1 \mathrm{~B}$		
/A58B80	/A5CF80	/AD8B80	IADCF80	Station ID = 1C		
IA58DA0	IA5D1A0	IAD8DA0	IADD1A0	Station ID = 1D		
/A58FC0	IA5D3C0	IAD8FC0	IADD3C0	Station ID $=1 \mathrm{E}$		
/A591E0	/A5D5E0	/AD91E0	/ADD5E0	Station ID $=1 \mathrm{~F}$		

- Data receive buffer

In the information given below, the "Main module [N1]" stands for the IR.LINK module.


## 3 TECHNICAL SUPPORT INFORMATION

### 3.13.3 Error counters

Communication errors in the J.NET, J.NET-INT, and IR.LINK modules (master stations) and stations (slave stations) are counted in the counters shown below. These error counters are initialized when the controller is reset.
In the information given below, the "Main module [N1]" stands for the IR.LINK module.


### 3.13.4 Trace

The J.NET, J.NET-INT, and IR.LINK modules are capable of tracing the status of communication in respect to each network (N1 or N2). Tracing begins on the occurrence of an LPU reset or error stop mode (due to an error or tracing stop) following power-on and performs recording for transmissions and receptions in each service.


Figure 3-6 Trace Area Structure

## 3 TECHNICAL SUPPORT INFORMATION



Figure 3-7 Trace Data Area Structure (for J.NET and J.NET-INT)

Trace data area


For details, see the information under "4.2.9 IR.LINK (model LQE546) error log info and required actions."

This timer count is increased in units of 4 ms and its value is recorded in milliseconds.


Figure 3-8 Trace Data Area Structure (for IR.LINK)

### 3.14 RS-232C (Model LQE560) and RS-422 (Model LQE565) Trace Information

### 3.14.1 Communication tracing

The RS-232C and RS-422 modules are capable of tracing communications and their details. By using this capability, you can generate trace data and use it for troubleshooting.

Table 3-9 Trace Buffer Structure (for Communication Tracing)

Channel				Format
0	1	2	3	$2^{15} \quad \cdots \quad 2^{0}$
/F4E000	/F5E000	/F6E000	/F7E000	Trace pointer
/F4E002	/F5E002	/F6E002	/F7E002	Perform/Stop tracing
/F4E004	/F5E004	/F6E004	/F7E004	Type as stop condition
/F4E006	/F5E006	/F6E006	/F7E006	Trace mode
/F4E008 to /F4E01E	/F5E008 to /F5E01E	/F6E008 to /F6E01E	/F7E008 to /F7E01E	(Unused)
/F4E020 to /F4E03E	/F5E020 to /F5E03E	/F6E020 to /F6E03E	/F7E020 to /F7E03E	Trace data \#0
/F4E040 to /F4E05E	/F5E040 to /F5E05E	/F6E040 to /F6E05E	/F7E040 to /F7E05E	Trace data \#1
	\|		\|	\|
/F4FFE0 to /F4FFFE	/F5FFE0 to /F5FFFE	/F6FFE0 to /F6FFFE	/F7FFE0 to /F7FFFE	Trace data \#254

(1) Trace pointer

This pointer points to the location in which to store trace data next. It contains a relative address value to the beginning of the trace buffer and is initialized to $/ 20$. The range of values it takes is from / 20 to / 1 FE 0 .
(2) Perform/Stop tracing

This item is used to set one of the following directives to the tracing capability:
$=0$ : Stop tracing; $\neq 0$ : Perform tracing (defaulted to 1 ).
(3) Type as stop condition

This item can be used to specify the same type as specified in the first word of a set of trace data.
If it is specified, the tracing is stopped when an occurrence of the specified type is traced.
(4) Trace mode

This item specifies one of the tracing modes:
= 0: Stop tracing; = 1: Trace endlessly; = 2: Stop on error (default); = 3: Stop when handler tracing is stopped.
(5) Trace data

The trace data area is accessed cyclically. That is, when the trace pointer exceeds the value \#254, it is reset to \#0. (For details on the structure of the trace data area, see below.)

Table 3-10 Trace Data Area Details (for Communication Tracing)

Address	Format
$/ 00$	Type
$/ 02$	Control signal statuses
$/ 04$	Send/receive data
1	$(24$ bytes $)$
$/ 1 \mathrm{~A}$	
$/ 1 \mathrm{C}$	Elapsed time (ms) after resetting
$y y$	

(1) Type

This item indicates one of the following occurrences:
/1000: Transmission has been performed normally.
/2000: Reception has been performed normally.
$/ 30^{* *}$ : Transmission has ended up with an error.
$/ 40^{* *}$ : Reception has ended up with an error.
where ** is the lower byte of the error code.
(2) Control signal status

This item indicates the input or output statuses of the control signals, as shown below.

(*) ON: Indicates that the communication line is in high level. OFF: Indicates that the communication line is in low level.

## 3 TECHNICAL SUPPORT INFORMATION

### 3.14.2 Handler tracing

The RS-232C and RS-422 modules are capable of tracing the activation of handlers from applications and the response from the handlers thereafter.

Table 3-11 Trace Buffer Structure (for Handler Tracing)

Channel				Format	
0	1	2	3	$2^{15} \quad \cdots \quad 2^{0}$	
/F4D000	/F5D000	/F6D000	/F7D000	Trace pointer	
/F4D002	/F5D002	/F6D002	/F7D002	Perform/Stop tracing	
/F4D004	/F5D004	/F6D004	/F7D004	Type as stop condition	
/F4D006	/F5D006	/F6D006	/F7D006	Trace mode	
/F4D008	/F5D008	/F6D008	/F7D008	(Unused)	
/F4D010 to   /F4D01E	/F5D010 to   /F5D01E	/F6D010 to   /F6D01E	/F7D010 to   /F7D01E	Trace data \#0	
/F4D020 to   /F4D02E	/F5D020 to   /F5D02E	/F6D020 to   /F6D02E	/F7D020 to   /F7D02E	Trace data \#1	
	/				
/F4DFF0 to   /F4DFFE	/F5DFF0 to   /F5DFFE	/F6DFF0 to   /F6DFFE	/F7DFF0 to   /F7DFFE	Trace data \#254	

(1) Trace pointer

This pointer points to the location in which to store trace data next. It contains a relative address value to the beginning of the trace buffer and is initialized to $/ 10$. The range of values it takes is from / 10 to /FF0.
(2) Perform/Stop tracing

This item is used to set one of the following directives to the tracing capability:
$=0$ : Stop tracing; $\neq 0$ : Perform tracing (defaulted to 1 ).
(3) Type as stop condition

This item can be used to specify the same type as specified in the first word of a set of trace data.
If it is specified, the tracing is stopped when an occurrence of the specified type is traced.
(4) Trace mode

This item specifies one of the tracing modes:
$=0:$ Stop tracing; = 1: Trace endlessly; = 2: Stop on error (default); = 3: Stop when
communication tracing is stopped.
(5) Trace data

The trace data area is accessed cyclically. That is, when the trace pointer exceeds the value \#254, it is reset to \#0. (For details on the structure of the trace data area, see below.)

## Table 3-12 Trace Data Area Details (for Handler Tracing)

Address	Format
$/ 00$	Type
$/ 02$	Error code
$/ 04$	Parameter 1
$/ 06$	Parameter 2
$/ 08$	
$/ 0 \mathrm{~A}$	
$/ 0 \mathrm{C}$	Elapsed time $(\mathrm{ms})$ after resetting
$/ 0 \mathrm{E}$	

(1) Type

This item indicates one of the following occurrences:
/8000: Transmission handler has been activated normally.
/9000: Reception handler has been activated normally.
/8800: Transmission handler has ended up with an error.
/9800: Reception handler has ended up with an error.
(2) Error code

This item contains an error code from the handler. For details, see the information under "4 ERROR LOG INFORMATION."
(3) Parameters 1, 2

Each of these items contains a parameter passed from the application to the handler.

## 3 TECHNICAL SUPPORT INFORMATION

### 3.14.3 H-7338 error tracing

The RS-232C and RS-422 modules are capable of tracing H-7338 communication errors and the communication data involved in $\mathrm{H}-7338$ communications.

Table 3-13 Trace Buffer Structure (for H-7338 Error Tracing)

Channel				Format
0	1	2	3	$2^{15} \quad \cdots \quad 2^{0}$
/F48920	/F58920	/F68920	/F78920	Error trace case number
/F48922	/F58922	/F68922	/F78922	(Unused)
$\begin{aligned} & \text { /F48940 to } \\ & \text { /F4895E } \end{aligned}$	$\begin{aligned} & \text { /F58940 to } \\ & \text { /F5895E } \end{aligned}$	$\begin{aligned} & \text { /F68940 to } \\ & \text { /F6895E } \end{aligned}$	$\begin{aligned} & \text { /F78940 to } \\ & \text { /F7895E } \end{aligned}$	Trace data \#0
/F48960 to /F4897E	/F58960 to /F5897E	$\begin{aligned} & \text { /F68960 to } \\ & \text { /F6897E } \end{aligned}$	/F78960 to /F7897E	Trace data \#1
\|	\|	\|	\|	\|
/F48AE0 to /F48AFE	$\begin{aligned} & \text { /F58AE0 to } \\ & \text { /F58AFE } \end{aligned}$	$\begin{aligned} & \text { /F68AE0 to } \\ & \text { /F68AFE } \end{aligned}$	/F78AE0 to /F78AFE	Trace data \#13

(1) Error trace case number

This item is a case number for which to write trace data to the associated trace area next. (This item is initialized to $/ 0$, and the range of values it takes is from $/ 0$ to $/ 0 \mathrm{D}$.)
(2) Trace data

The trace data area is accessed cyclically. That is, when the error trace case number exceeds \#13, it is reset to \#0. (For details on the structure of the trace data area, see below.)

## Table 3-14 Trace Data Area Details (for H-7338 Error Tracing)

Address	Format
$/ 00$	Error code
$/ 04$	Command code
$/ 08$	Parameter 1
$/ 0 \mathrm{C}$	Parameter 2
$/ 10$	Parameter 3
$/ 14$	Parameter 4
$/ 18$	Elapsed time (ms) after resetting
$/ 1 \mathrm{C}$	(Unused)

(1) Error code

This item identifies a reported command or communication line error.

Table 3-15 Error Codes in H-7338 Error Trace Information

Error code	Meaning	Required action		
$/ 00000001$	No delimiting space character is detected between   parameters.	Check the destination's device settings.		
$/ 00000002$	A parameter whose set value is outside the permitted range   is detected.		Check the destination's device settings.   Check, also, if the cable is broken or   there is any noise source near the laid   cable.	
$/ 00000101$	Reception parity error	Reception overrun error		
$/ 00000102$	Reception framing error	Reception noise error		

(2) Command code

This item identifies the command that has been issued for $\mathrm{H}-7338$ communication.
(3) Parameters 1 thru 4

Each of these parameters is one that has been provided for $\mathrm{H}-7338$ communication.

## 3 TECHNICAL SUPPORT INFORMATION

### 3.14.4 Error counters

The RS-232C and RS-422 modules are provided with error counters to count communication errors. These error counters are initialized when the controller is reset.

Table 3-16 Error Counters

Channel				Format
0	1			
2	3	$2^{15} \ldots$		
/F48900	/F58900	/F68900	/F78900	Transmission done normally
/F48902	/F58902	/F68902	/F78902	CS lost during transmission
/F48904	/F58904	/F68904	/F78904	Temporarily stopped transmission timed out
/F48906	/F58906	/F68906	/F78906	Reception done normally
/F48908	/F58908	/F68908	/F78908	Reception overrun error
/F4890A	/F5890A	/F6890A	/F7890A	CD lost during reception
/F4890C	/F5890C	/F6890C	/F7890C	Reception framing error
/F4890E	/F5890E	/F6890E	/F7890E	Reception parity error
/F48910	/F58910	/F68910	/F78910	Reception noise error
/F48912	/F58912	/F68912	/F78912	Break sequence received
/F48914	/F58914	/F68914	/F78914	Reception monitoring timeout error
/F48916	/F58916	/F68916	/F78916	Received-data discard counter
/F48918 to	/F58918 to	/F68918 to	/F78918 to	
/F4891E	/F5891E	/F6891E	/F7891E	

### 3.15 D.NET (Model LQE570/575) Statistical and Error Information

## - Statistical information

Each unit of statistical information is 2 bytes long, and each counter takes values in the range 0 to $0 x F F F F$ cyclically, i.e., when it exceeds the value $0 x F F F F$, it is reset to 0 and goes on counting.
(1) Event buffer usage rate counts (provided for future extension)

0xE*7200	Event queue overflow detection count	$\begin{aligned} & *= 3(\text { channel } 0) \\ & 7 \text { (channel 1) } \\ & \text { B (channel 0) } \\ &\text { F (channel } 0) \end{aligned}$
0xE*7202	Event queue buffer current use count	
0xE*7204	Event queue buffer peak use count	
0xE*7206	Event queue overflow detection count	
0xE*7208	Event queue buffer current use count	
0xE*720A	Event queue buffer peak use count	
0xE*720C	Event queue overflow detection count	
0xE*720E	Event queue buffer current use count	
0xE*7210	Event queue buffer peak use count	
0xE*7212	Reserved for future extension	
0xE*721E		

(2) Data buffer usage rate counts

0xE*7220	Transmission buffer overflow detection count	*=3 (channel 0)
0xE*7222	Transmission buffer current use count	7 (channel 1)
0xE*7224	Transmission buffer peak use count	B (channel 0)
0xE*7226	Reception buffer overflow detection count	
$0 \times \mathrm{E}^{*} 7228$	Reception buffer current use count	
$0 \times E^{*} 722 \mathrm{~A}$	Reception buffer peak use count	
$0 x E^{*} 722 \mathrm{C}$	System reception buffer overflow detection count	
$0 \times \mathrm{E}^{*} 722 \mathrm{E}$	System reception buffer current use count	
0xE*7230	System reception buffer peak use count	
$0 \times E^{*} 7232$	Reserved for future extension	

## (3) CAN control counts

0xE*7240	Stack error detection count	$\begin{aligned} *= & 3(\text { channel } 0) \\ & 7 \text { (channel } 1) \end{aligned}$
0xE*7242	Form error detection count	
0xE*7244	Ack. error detection count	B (channel 0)
0xE*7246	Bit-1 error detection count	
0xE*7248	Bit-0 error detection count	
$0 \times E * 724 \mathrm{~A}$	CRC error detection count	
0xE*724C	CAN error overcount detection count	
0xE*724E	Transmission path bus-OFF detection count	
0xE*7250	Transmission path bus-OFF recovery count	
0xE*7252	CAN invalid-interrupt count	
0xE*7254	Remote frame-reception detection count	
0xE*7256	CAN chip error passive-condition occurrence count	
$0 \times E * 7258$	REC count-up detection count	
0xE*725A	TEC count-up detection count	
0xE*725C	HCAN reset completion wait retry count	
0xE*725E	HCAN initialization completion wait retry count	

(4) Activity information counts

0xE*7260	Transmission completion count	*=3 (channel 0)   7 (channel 1)   B (channel 0)   F (channel 0)
0xE*7262	Reception completion count	
0xE*7264	Successful I/O data read count	
0xE*7266	Successful I/O data write count	
0xE*7268	Command request acceptance count	
0xE*726A	Command acceptance completion report count	
0xE*726C	Command response report count	
0xE*726E	Service request acceptance count	
0xE*7270	Open acceptance count	
0xE*7272	Close acceptance count	
0xE*7274	Explicit acceptance count	
0xE*7276	Service acceptance completion report count	
0xE*7278	Service response report count	
0xE*727A	System message report count	
0xE*727C	Al report count	
$0 x E^{*} 727 \mathrm{E}$	Successful I/O data high-speed write count	

## (5) User error 1 counts

0xE*7280	Unsuccessful I/O data read count	*=3 (channel 0)   7 (channel 1)   B (channel 0)   F (channel 0)
0xE*7282	Unsuccessful I/O data write count (unused)	
0xE*7284	Effective data length error detection count	
0xE*7286	Service double-start detection count	
0xE*7288	Open double-start detection count	
0xE*728A	Open issuance destination error detection count	
0xE*728C	Close issuance destination error detection count	
0xE*728E	MACID error detection count	
0xE*7290	Service issuance status error detection count	
0xE*7292	Service acceptance failure detection count	
0xE*7294	Service start failure detection count	
0xE*7296	UCMM start failure detection count	
0xE*7298	Fragmentation Ack timeout detection count for clients	
0xE*729A	Fragmentation Ack timeout detection count for servers	
0xE*729C	Fragmentation transmission data excessive length detection count for clients	
0xE*729E	Fragmentation transmission data excessive length detection count for servers	

(6) User error 2 counts

$0 \times E^{*} 72 \mathrm{~A} 0$	Transmission connection error detection count for clients	$\begin{aligned} & \text { * }=3(\text { channel } 0) \\ & 7(\text { channel } 1) \\ & \text { B (channel 0) } \\ & \text { F }(\text { channel } 0) \end{aligned}$
0xE*72A2	Transmission connection error detection count for servers	
$0 x \mathrm{E}^{*} 72 \mathrm{~A} 4$	Explicit connection timeout detection count for clients	
$0 \times \mathrm{E}^{*} 72 \mathrm{~A} 6$	Explicit connection timeout detection count for servers	
$0 \times \mathrm{E}^{*} 72 \mathrm{~A} 8$	CAN transmission timeout detection count	
$0 \times E^{*} 72 \mathrm{AA}$	Explicit frame cancel detection count (CAN transmission timeout)	
$0 \times E^{*} 72 \mathrm{AC}$	Transmission frame cancel count (NetStatus inconsistency)	
0xE*72AE	Reception frame cancel count (NetStatus inconsistency)	
0xE*72B0	User suppression occurrence count	
0xE*72B2	Reception protocol error count for clients	
0xE*72B4	Reception protocol error count for servers	
0xE*72B6	Transmission connection error detection count for I/O	
0xE*72B8	Reception connection error detection count for I/O	
0xE*72BA	Transmission connection error detection count for UCMM	
$0 \times \mathrm{E}^{*} 72 \mathrm{BC}$	Transmission protocol error detection count for UCMM	
0xE*72BE	I/O connection timeout detection count	

## (7) System error counts

0xE*72C0	Service double-start detection count (TI wait)	$\begin{array}{r} \text { *=3 }(\text { (channel 0) } \\ 7 \text { (channel 1) } \end{array}$
0xE*72C0	Service acceptance completion buffer-busy detection count	
0xE*72C0	Service response queue-busy detection count	0)
0xE*72C0	Service response report wait detection count	
0xE*72C0	System message queue-busy detection count	
0xE*72C0	System message buffer-busy detection count	
0xE*72C0	Al queue-busy detection count	
0xE*72C0	Al buffer-busy detection count	
0xE*72D0	Exclusive allocation failure detection count for io_Write	
0xE*72D0	Exclusive allocation failure detection count for io_Read	
0xE*72D0	Mismatched fragmentation reception count (for l/O)	
0xE*72D0	Abnormal fragmentation reception count (for l/O)	
0xE*72D0	Excessive data volume detection count (for I/O)	
0xE*72D0	CPU monitoring timeout detection count	
0xE*72D0	CPU monitoring timeout recovery detection count	
0xE*72D0	Reserved for future extension	

(8) User error 3 counts

0xE*72E0	loSeq frame cancel count (CAN transmission timeout)	$\begin{array}{r} \text { *=3 }(\text { channel } 0) \\ 7 \text { (channel } 1) \end{array}$
0xE*72E2	IoSeq reception report queue-busy detection count	
0xE*72E4	IoSeq reception report wait detection count	B (channel 0)
0xE*72E6	IoSeq transmission double-start detection count (TI wait)	
0xE*72E8	IoSeq transmission acceptance completion buffer-busy detection count	
0xE*72EA	Reception protocol error detection count (for proxies)	
$0 x \mathrm{E}^{*} 72 \mathrm{EC}$	Explicit transmission right acquisition failure detection count for user/master start	
0xE*72EE	Explicit transmission right acquisition failure detection count for proxy start	
0xE*72F0	Reserved for future extension	
0xE*72FE		

## - Trace information

(1) Normal trace table structure

(2) Special trace table structure

(3) Trace information list

No.	Trace name	Trace code	Type	Trace data [0]		Trace data [1]		Trace data [2]		Trace data [3]		$\begin{gathered} \mathrm{Al} \\ \text { report } \end{gathered}$	Log name
1	In a command reception, the specified class ID was out of range.	0x2001	0	$\begin{gathered} \text { Reception } \\ \text { In } \\ \hline \end{gathered}$	0	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Local station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Service } \\ & \text { code } \end{aligned}$	ClassID	Instanceld	$\begin{gathered} \hline \text { Received } \\ \text { data [0] } \\ \hline \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { Received } \\ \text { data [1] } \end{array} \\ \hline \end{gathered}$		
2	In a request reception, the specified class ID was out of range.	0x2002	0	ClassiD		Received CANID (*)		0		0			
3	Error response transmission buffer acquisition was not successful.	0x2003	0	Reception In		0		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	0x94	Gen_Err	Add_Err		


No.	Trace name	$\begin{aligned} & \hline \begin{array}{l} \text { Trace } \\ \text { code } \end{array} \\ & \hline \end{aligned}$	Type	Trace data [0]	Trace data [1]	Trace data [2]	Trace data [3]	$\begin{gathered} \mathrm{Al} \\ \text { report } \end{gathered}$	Log name
1	Bus-OFF retry limit exceeded (special).	0x3000	1	Retry counter	0	0	0		


Master Object											
No.	Trace name	Trace code	Type	Trace data [0]		Trace data [1]	Trace data [2]	Trace data [3]		$\begin{gathered} \mathrm{Al} \\ \text { report } \end{gathered}$	Log name
1	The connection establishment process was ended normally.	0x6010	0	Remote station MACID		Issued command code	Slave management information			-	-
2	The connection establishment process was ended abnormally (send-buffer acquisition failed).	0x6020	1	Remote station MACID		Issued command code	Slave management			-	-
3	The connection establishment process was ended abnormally (error response received).	0x6021	1	Remote station MACID		Issued command code	Slave management information	Gen_Err	Add_Err	-	-
4	The connection establishment process was ended abnormally (response timed out).	0x6022	1	Remote station MACID		Issued command code	Slave management information			-	-
5	The connection establishment process was abnormal (data length improper).	0x6023	0	Remote station MACID		Issued command code	Slave management information			-	-
6	The connection establishment process was ended abnormal (service code improper).	0x6024	0	Remote station MACID		Issued command code	Slave management information			-	-
7	The connection establishment process was ended abnormally (connection size mismatch).	0x6025	1	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Service } \\ \text { code } \end{array} \\ \hline \end{array}$	Slave management information	ProducedConnectionSize	ConsumedC	nectionSize	-	-
8	A response was received in the connection establishment process.	0x6030	0	Remote station MACID		Slave management information	Data section [0][1]	Data sec	on [2][3]	-	-
9	The connection establishment process was ended abnormal (response timed out).	0x6040	0	Remote station MACID		0	Slave management			-	-
10	The connection establishment process was ended abnormal (data length or service code improper).	0x6041	0	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Reception } \\ \text { In } \end{gathered}$	Issued command code	Slave management information	Data sec	on [0][1]	-	-

(*) A byte-swapped value is set.

No.	Trace name	$\begin{aligned} & \text { Trace } \\ & \text { code } \end{aligned}$	Type	Trace data [0]	Trace data [1]		Trace data [2]	Trace data [3]	$\begin{array}{\|c\|} \hline \mathrm{Al} \\ \text { report } \end{array}$	Log name
1	A command was received.	0x8010	0	$\begin{array}{\|c} \hline \begin{array}{c} \text { Data length of detailed } \\ \text { data section } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Specified } \\ & \text { MACID } \end{aligned}$	$\begin{aligned} & \text { Service } \\ & \text { code } \end{aligned}$	Detailed data section 1	Detailed data section 2		com_accept
2	Command TI report	0x8020	0	0	Error code		Error data	0		com_ti_rpt
3	A command double-start was attempted.	0x8011	0	TV flag	RV flag		"Busy" flag	0		ser_dup
4	Command response report.	0x8030	0	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Data length of detailed } \\ \text { data section } \end{array} \\ \hline \end{array}$	Specified MACID	$\begin{aligned} & \text { Service } \\ & \text { code } \end{aligned}$	Detailed data section 1	Detailed data section 2		com_rsp_rpt
5	AI report	0x8040	0	$\begin{array}{\|c} \hline \text { System Msg code, data } \\ \text { size } \end{array}$	Error code		Error data	0		ai_rpt
6	The AI report queue table was full.	0x8041	0	0	Error code		Error data	0		aii_que_busy
7	An AI report was awaited (AI report buffer full or TI not reported yet).	0x8042	0	$\begin{array}{\|c} \hline \text { System message buffer } \\ \text { PP/CP } \\ \hline \end{array}$	Error code		Error data	"Busy" flag		ai_wait


No.	Trace name	code   Trace	Type	Trace data [0]	Trace data [1]	Trace data [2]	Trace data [3]	$\begin{gathered} \mathrm{Al} \\ \text { report } \end{gathered}$	Log name
1	Error stop	0xf000	0	Error code	0	0	0		com_accept

[^0]| No. | C | S | Trace name | Trace code | Type | Trace data [0] |  | Trace data [1] | Trace data [2] |  | Trace data [3] |  | $\begin{array}{\|c\|} \hline \mathrm{Al} \\ \text { report } \end{array}$ | Log name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\sqrt{ }$ | $\sqrt{ }$ | An Explicit transmission was accepted. | 0x4001 | 0 | InstanceID | Transmission In | 0 | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \end{array}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \end{array}$ | Transmitted data[2] | $\begin{gathered} \text { Transmitted } \\ \text { data[3] } \end{gathered}$ |  |  |
| 2 | $\checkmark$ | $\sqrt{ }$ | An Explicit reception was accepted. | 0x4002 | 0 | InstanceID | Reception In | Received CANID (*) | Received data[0] | Received data[1] | Received data[2] | $\begin{gathered} \text { Received } \\ \text { data[3] } \\ \hline \end{gathered}$ |  |  |
| 3 | $\sqrt{ }$ |  | Transmission was unachievable (the connection status was other than "Established" [starting source: IFO]). | 0x4101 | 1 | InstanceID | state | 0 | $\begin{gathered} \text { Transmitted } \\ \text { data[0] } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Transmitted } \\ \text { data[1] } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$ | $\begin{gathered} \text { Transmitted } \\ \text { data[3] } \end{gathered}$ | 0x7105 | sendc_err_client |
| 4 | $\sqrt{ }$ |  | Transmission was unachievable (the connection status was other than "Established" [starting source: MO]). | 0x4102 | 1 | InstanceID | state | 0 | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \end{array}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$ | $\begin{gathered} \text { Transmitted } \\ \text { data[3] } \\ \hline \end{gathered}$ |  | sendc_err_client |
| 5 |  | $\sqrt{ }$ | Transmission was unachievable (the connection status was other than "Established"). | 0x4103 | 0 | InstanceID | state | 0 | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$ | $\begin{gathered} \text { Transmitted } \\ \text { data[1] } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$ | $\begin{gathered} \text { Transmitted } \\ \text { data[3] } \end{gathered}$ |  | sendc_err_server |
| 6 |  | $\sqrt{ }$ | Transmission was unachievable (the instance type was I/O). | 0x4104 | 0 | InstanceID | Instance type | 0 | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \end{array}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \end{array}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[3] } \end{array}$ |  | sendc_err_server |
| 7 |  | $\sqrt{ }$ | Transmission was unachievable (the transmission buffer destination MACID did not match the MACID of the connection destination). | 0x4105 | 0 | InstanceID | Remote station MACID | 0 | $\begin{gathered} \text { Transmitted } \\ \text { data[0] } \end{gathered}$ | $\begin{gathered} \text { Transmitted } \\ \text { data[1] } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[3] } \end{array}$ |  | sendc_err_server |
| 8 |  | $\sqrt{ }$ | Transmission was unachievable (the server process was not being performed). | 0x4106 | 0 | InstanceID | Remote station MACID | 0 | $\begin{gathered} \text { Transmitted } \\ \text { data[0] } \\ \hline \end{gathered}$ | Transmitted data[1] | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$ | $\begin{gathered} \text { Transmitted } \\ \text { data[3] } \end{gathered}$ |  | sendc_err_server |
| 9 | $\checkmark$ |  | Transmission was unachievable (a transmission double-start was attempted [starting source: IFO]). | 0x4107 | 1 | InstanceID | Remote station MACID | 0 | $\begin{gathered} \text { Transmitted } \\ \text { data[0] } \end{gathered}$ | $\begin{gathered} \text { Transmitted } \\ \text { data[1] } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$ | $\begin{gathered} \text { Transmitted } \\ \text { data[3] } \end{gathered}$ | 0x5102 | ser_dup |
| 10 | $\checkmark$ |  | Transmission was unachievable (a transmission double-start was attempted [starting source: MO]). | 0x4108 | 1 | InstanceID | Remote station MACID | 0 | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \end{array}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \end{array}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[3] } \end{array}$ |  | ser_dup_client |
| 11 | $\checkmark$ |  | A reception was canceled (the effective data length of one frame was 0 or 1 byte). | 0x4201 | 1 | InstanceID | Reception In | $\begin{gathered} \text { Received CANID } \\ \left({ }^{*}\right) \\ \hline \end{gathered}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot _err_client |
| 12 |  | $\checkmark$ | A reception was canceled (the effective data length of one frame was 0 or 1 byte). | 0x4202 | 1 | InstanceID | Reception In | Received CANID <br> (*) | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 13 | $\checkmark$ |  | A reception was canceled (the fragmented effective data of received response was 0 bytes [there was no data before ServiceCode]). | 0x4203 | 1 | InstanceID | Remote station MACID | Received data cumulative length |  | 0 |  | 0 |  | prot_err_client |
| 14 |  | $\sqrt{ }$ | A reception was canceled (the fragmented effective data of received request was 0 bytes [there was no data before ServiceCode]). | 0x4204 | 1 | InstanceID | Remote station MACID | Received data cumulative length |  | 0 |  | 0 |  | prot_err_server |
| 15 |  | $\checkmark$ | A reception was canceled (the fragmented effective data of received request was 1 or 2 bytes [there was no data before InstanceID]). | 0x4205 | 1 | InstanceID | Remote station MACID | Received data cumulative length |  | 0 |  | 0 |  | prot_err_server |
| 16 |  | $\sqrt{ }$ | A reception was canceled (a 2-byte non-fragmented request was received [there was no data before InstanceID]). | 0x4206 | 1 | InstanceID | Reception In | Received CANID <br> (*) | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 17 | $\checkmark$ |  | A reception was canceled (the cumulative length of received fragmented data exceeded 71 bytes). | 0x4207 | 1 | InstanceID | Reception In | $\begin{gathered} \text { Received data } \\ \text { cumulative length } \end{gathered}$ | Received data[0] | Received data[1] | Received data[2] | $\begin{gathered} \text { Received } \\ \text { data[3] } \\ \hline \end{gathered}$ |  | prot_err_client |
| 18 |  | $\checkmark$ | A reception was canceled (the cumulative length of received fragmented data exceeded 71 bytes). | 0x4208 | 1 | InstanceID | Reception In | Received data cumulative length | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 19 | $\checkmark$ |  | A reception was canceled (a request was received in a fragmentation transmission to a client). | 0x4209 | 1 | InstanceID | Reception In | $\begin{gathered} \text { Received CANID } \\ (*) \\ \hline \end{gathered}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |
| 20 |  | $\sqrt{ }$ | A reception was canceled (a response was received in a fragmentation transmission to a server). | 0x420A | 1 | InstanceID | Reception In | $\begin{gathered} \text { Received CANID } \\ \left({ }^{*}\right) \end{gathered}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 21 | $\checkmark$ |  | A reception was canceled (a request was received in a non-fragmentation transmission to a client port). | 0x420B | 1 | InstanceID | Reception In | Received CANID (*) | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |
| 22 |  | $\checkmark$ | A reception was canceled (a response was received in a non-fragmentation transmission to a server port). | 0x420C | 1 | InstanceID | Reception In | Received CANID $\left({ }^{*}\right)$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 23 | $\checkmark$ |  | A reception was canceled (fragmented data was received with FragCnt $\neq 0$ when Type = beginning). | 0x420D | 1 | InstanceID | Reception In | Received CANID (*) | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |
| 24 |  | $\sqrt{ }$ | A reception was canceled (fragmented data was received with FragCnt $\neq 0$ when Type = beginning). | 0x420E | 1 | InstanceID | Reception In | Received CANID <br> (*) | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 25 | $\checkmark$ |  | A reception was canceled (fragmented data whose type was other than the beginning was received in a wait for the beginning). | 0x420F | 0 | InstanceID | Reception In | Received CANID <br> (*) | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |

[^1]| No. | C | S | Trace name | Trace code | Type | Trace data [0] |  | Trace data [1] | Trace data [2] |  | Trace data [3] |  | $\begin{gathered} \mathrm{Al} \\ \text { report } \end{gathered}$ | Log name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26 |  | $\checkmark$ | A reception was canceled (fragmented data whose type was other than the beginning was received in a wait for the beginning). | 0x4210 | 0 | InstanceID | Reception In | $\begin{gathered} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{gathered}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 27 | $\checkmark$ |  | A reception was canceled (fragmented data having an abnormal FragmentCount was received in a wait for the next Frag). | 0x4211 | 1 | InstanceID | Reception In | $\begin{array}{\|c} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{array}$ | $\begin{gathered} \text { Received } \\ \text { data[0] } \end{gathered}$ | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |
| 28 |  | $\checkmark$ | A reception was canceled (fragmented data having an abnormal FragmentCount was received in a wait for the next Frag). | 0x4212 | 1 | InstanceID | Reception In | Received CANID <br> (*) | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 29 | $\checkmark$ |  | A reception was canceled (the beginning was received in a wait for the next Frag (processing was continued with this situation handled as the reception of the beginning)). | 0x4213 | 0 | InstanceID | Received number | $\underset{(*)}{\text { Received CANID }}$ | $\begin{aligned} & \text { Received } \\ & \text { data[0] } \end{aligned}$ | Received data[1] | $\begin{aligned} & \text { Received } \\ & \text { data[2] } \end{aligned}$ | Received data[3] |  | prot_err_client |
| 30 |  | $\checkmark$ | A reception was canceled (the beginning was received in a wait for the next Frag (processing was continued with this situation handled as the reception of the beginning)). | 0x4214 | 0 | InstanceID | Received number | $\underset{\left({ }^{( }\right)}{\text {Received CANID }}$ | $\begin{aligned} & \text { Received } \\ & \text { data[0] } \end{aligned}$ | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 31 | $\checkmark$ |  | A reception was canceled (fragmented data whose count was not 0 was received in the reception of the beginning in a wait for the next Frag). | 0x4215 | 0 | InstanceID | Reception In | $\begin{gathered} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{gathered}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |
| 32 |  | $\checkmark$ | A reception was canceled (fragmented data whose count was not 0 was received in the reception of the beginning in a wait for the next Frag). | 0x4216 | 0 | InstanceID | Reception In | $\begin{array}{\|c} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{array}$ | $\begin{gathered} \text { Received } \\ \text { data[0] } \end{gathered}$ | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 33 | $\checkmark$ |  | A reception was canceled (the FragType was changed to "last" in a retry operation). | 0x4217 | 0 | InstanceID | Reception In | $\begin{array}{\|c} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{array}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |
| 34 |  | $\checkmark$ | A reception was canceled (the FragType was changed to "last" in a retry operation). | 0x4218 | 0 | InstanceID | Reception In | $\underset{(*)}{\text { Received CANID }}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 35 | $\checkmark$ |  | A reception was canceled (a response was received although a request was not transmitted [Fragment]). | 0x4219 | 1 | InstanceID | Reception In | $\underset{\left({ }^{*}\right)}{\text { Received CANID }}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |
| 36 |  | $\checkmark$ | A reception was canceled (a response was received although a request was not transmitted [Non-Fragment]). | 0x421A | 1 | InstanceID | Reception In | $\begin{array}{\|c} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{array}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 37 | $\checkmark$ |  | A reception was canceled (a server reception occurred during a server reception process [Fragment]). | 0x421B | 0 | InstanceID | Reception In | $\begin{gathered} \text { Received CANID } \\ \left({ }^{*}\right) \end{gathered}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |
| 38 |  | $\checkmark$ | A reception was canceled (a server reception occurred during a server reception process [Non-Fragment]). | 0x421C | 0 | InstanceID | Reception In | $\underset{\left({ }^{*}\right)}{\text { Received CANID }}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 39 | $\checkmark$ |  | A reception was canceled (the received CANID did not match the Instance reception CANID). | 0x421D | 0 | InstanceID | Remote station MACID | $\begin{gathered} \text { Received CANID } \\ \left({ }^{*}\right) \\ \hline \end{gathered}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |
| 40 |  | $\checkmark$ | A reception was canceled (the received CANID did not match the Instance reception CANID). | 0x421E | 0 | InstanceID | Remote station MACID | $\begin{array}{\|c} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{array}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 41 | $\checkmark$ |  | A reception was canceled (the connection status was other than "Established"). | 0x421F | 0 | InstanceID | state | $\underset{(*)}{\substack{\text { Received CANID }}}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |
| 42 |  | $\checkmark$ | A reception was canceled (the connection status was other than "Established"). | 0x4220 | 0 | InstanceID | state | Received CANID <br> (*) | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 43 |  | $\checkmark$ | A reception was canceled (InstanceType was I/O). | 0x4221 | 0 | InstanceID | Reception In | $\begin{gathered} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{gathered}$ | $\begin{gathered} \text { Received } \\ \text { data[0] } \\ \hline \end{gathered}$ | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 44 |  | $\checkmark$ | A reception was canceled (the Explicit port of Group 2 server received data from other than the master). | 0x4222 | 0 | InstanceID | Reception In | $\begin{array}{\|c} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{array}$ | Received data[0] | Received data[1] | Master | MACID |  | prot_err_server |
| 45 | $\checkmark$ |  | A reception was canceled during a hold (non-fragmented data was received during a fragmentation reception [processing was continued]). | 0x4301 | 0 | InstanceID | Reception In | $\underset{\left({ }^{*}\right)}{\text { Received CANID }}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |
| 46 |  | $\checkmark$ | A reception was canceled during a hold (non-fragmented data was received during a fragmentation reception [processing was continued]). | 0x4302 | 0 | InstanceID | Reception In | Received CANID <br> (*) | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_server |
| 47 | $\checkmark$ |  | An Ack reception was canceled (the received Ack data length was abnormal). | 0x4401 | 0 | InstanceID | Reception In | $\begin{gathered} \text { Received CANID } \\ \left({ }^{*}\right) \\ \hline \end{gathered}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |
| 48 |  | $\checkmark$ | An Ack reception was canceled (the received Ack data length was abnormal). | 0x4402 | 0 | InstanceID | Reception In | $\begin{array}{\|c} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{array}$ | Received data[0] | Received data[1] | $\begin{gathered} \text { Received } \\ \text { data[2] } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Received } \\ \text { data[3] } \end{gathered}$ |  | prot_err_server |
| 49 | $\checkmark$ |  | An Ack reception was canceled (the received Ack sequence number did not agree with the Ack sequence number whose reception was awaited). | 0x4403 | 0 | InstanceID | Remote station MACID | Ack number for the next reception awaited | $\begin{aligned} & \text { Received } \\ & \text { data[0] } \end{aligned}$ | Received data[1] | Received data[2] | Received data[3] |  | prot_err_client |


No.	c	s	Trace name	Trace code	Type	Trace data [0]		Trace data [1]	Trace data [2]		Trace data [3]		$\begin{array}{\|c\|} \hline \mathrm{Al} \\ \text { report } \end{array}$	Log name
50		$\checkmark$	An Ack reception was canceled (the received Ack sequence number did not agree with the Ack sequence number whose reception was awaited).	0x4404	0	Instanceld	Remote station MACID	Ack number for the next reception awaited	$\begin{aligned} & \text { Received } \\ & \text { data[0] } \end{aligned}$	Received data[1]	$\begin{aligned} & \text { Received } \\ & \text { data[2] } \end{aligned}$	Received   data[3]		prot_err_server
51	$\checkmark$		An Ack reception was canceled (Ack was received while no fragmentation transmission was performed).	0x4405	0	InstancelD	Reception In	$$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Received } \\ \text { data[0] } \end{array} \\ \hline \end{array}$	$\begin{gathered} \hline \begin{array}{c} \text { Received } \\ \text { data[1] } \end{array} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Received } \\ \text { data[2] } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Received } \\ \text { data[3] } \\ \hline \end{gathered}$		prot_err_client
52		$\checkmark$	An Ack reception was canceled (Ack was received while no fragmentation transmission was performed).	0x4406	0	InstancelD	Reception In	$$	$\begin{aligned} & \hline \begin{array}{l} \text { Received } \\ \text { data[0] } \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Received } \\ \text { data[1] } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Received } \\ \text { data[2] } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Received } \\ \text { data[3] } \\ \hline \end{gathered}$		prot_err_server
53	$\checkmark$		Transmission was unachievable (the received Ack status was abnormal).	0x4501	0	Instanceld	Reception In	$$	$\begin{gathered} \text { Received } \\ \text { data[0] } \\ \hline \end{gathered}$	Received data[1]	$\begin{gathered} \begin{array}{c} \text { Received } \\ \text { data[2] } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Received } \\ \text { data[3] } \\ \hline \end{gathered}$	0x7103	ack_sts1_client
54		$\checkmark$	Transmission was unachievable (the received Ack status was abnormal).	0x4502	0	InstancelD	Reception In	$\begin{array}{\|c\|} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{array}$	$\begin{aligned} & \text { Received } \\ & \text { data[0] } \end{aligned}$	Received data[1]	$\begin{array}{\|c} \hline \text { Received } \\ \text { data[2] } \end{array}$	$\begin{gathered} \text { Received } \\ \text { data[3] } \\ \hline \end{gathered}$		ack_sts1_server
55	$\checkmark$		Transmission was unachievable (fragmentation transmission buffer acquisition failed).	0x4601	0	Instanceld	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { SysBufGet return } \\ \text { code } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Received } \\ \text { data[0] } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Received } \\ \text { data[1] } \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Received } \\ \text { data[2] } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Received } \\ \text { data[3] } \\ \hline \end{gathered}$	0x5142	
56		$\checkmark$	Transmission was unachievable (fragmentation transmission buffer acquisition failed).	0x4602	0	Instanceld	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { SysBufGet return } \\ \text { code } \end{gathered}$	$\begin{gathered} \text { Received } \\ \text { data[0] } \\ \hline \end{gathered}$	Received	$\begin{gathered} \begin{array}{c} \text { Received } \\ \text { data[2] } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Received } \\ \text { data[3] } \\ \hline \end{gathered}$		
57		$\checkmark$	Response transmission was unachievable (response transmission buffer acquisition for a short request failed).	0x4603	0	InstancelD	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { SysBufGet return } \\ \text { code } \end{gathered}$						
58		$\checkmark$	Response transmission was unachievable (response transmission buffer acquisition for a short request failed).	0x4604	0	InstancelD	Reception In	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Received CANID } \\ \left({ }^{*}\right) \end{array} \\ \hline \end{array}$	$\begin{gathered} \hline \text { Received } \\ \text { data[0] } \\ \hline \end{gathered}$	Received data[1]	$\begin{array}{\|c} \hline \begin{array}{c} \text { Received } \\ \text { data[2] } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Received } \\ \text { data[3] } \end{gathered}$		
59	$\checkmark$		Ack transmission was unachievable (Ack transmission buffer acquisition failed).	0x4605	0	InstancelD	Reception In	$$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Received } \\ \text { data[0] } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Received } \\ \text { data[1] } \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Received } \\ \text { data[2] } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Received } \\ \text { data[3] } \\ \hline \end{gathered}$		
60		$\checkmark$	Ack transmission was unachievable (Ack transmission buffer acquisition failed).	0x4606	0	InstancelD	Reception In	$$	$\begin{gathered} \text { Received } \\ \text { data[0] } \\ \hline \end{gathered}$	Received data[1]	$\begin{array}{\|c} \hline \begin{array}{c} \text { Received } \\ \text { data[2] } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Received } \\ \text { data[3] } \\ \hline \end{gathered}$		
61	$\checkmark$		A WDT timeout occurred (Explicit).	0x4701	0	InstancelD	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Produced } \\ \text { ConnectionID (*) } \\ \hline \end{array}$	$\begin{array}{r} \text { Cons } \\ \text { Connecti } \\ \hline \end{array}$	$\begin{aligned} & \text { sumed } \\ & \text { ionlD } \end{aligned}{ }^{(2)}$			0x7107	ex_wdto_client
62		$\checkmark$	A WDT timeout occurred (Explicit).	0x4702	0	Instanceld	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Produced } \\ \text { ConnectionID (*) } \\ \hline \end{array}$	$\begin{array}{r} \text { Cons } \\ \text { Connecti } \end{array}$	$\begin{aligned} & \text { sumed } \\ & \text { iomiD (*) } \end{aligned}$				ex_wdto_server
63	$\checkmark$	$\checkmark$	A WDT timeout occurred (I/O).	0x4703	0	Instanceld	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Produced } \\ \text { ConnectionID (*) } \\ \hline \end{array}$	$\begin{array}{r} \text { Cons } \\ \text { Connecti } \end{array}$	$\begin{aligned} & \text { sumed } \\ & \text { ionID (*) } \end{aligned}$				ex_wdto_io
64	$\checkmark$		Ack timeout occurred (1st occurrence).	0x4801	0	Instanceld	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Produced } \\ \text { ConnectionID (*) } \\ \hline \end{array}$	$\begin{array}{r} \text { Cons } \\ \text { Connecti } \end{array}$	$\begin{aligned} & \text { sumed } \\ & \text { ionID (*) } \end{aligned}$				ack_to_lient
65		$\checkmark$	Ack timeout occurred (1st occurrence).	0x4802	0	Instanceld	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Produced } \\ \text { ConnectionID (*) } \\ \hline \end{array}$	$\begin{array}{r} \text { Cons } \\ \text { Connecti } \end{array}$	$\begin{aligned} & \text { sumed } \\ & \text { ionID } \text { (*) }^{*} \\ & \hline \end{aligned}$				ack_to_server
66	$\checkmark$		Ack timeout occurred (2nd occurrence = Ack retry limit exceeded).	0x4803	0	InstancelD	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Produced } \\ \text { ConnectionID (*) } \\ \hline \end{array}$	$\begin{array}{r} \text { Cons } \\ \text { Connecti } \end{array}$	$\begin{aligned} & \text { sumed } \\ & \text { ionID (*) } \end{aligned}$			0x7101	ack_to_client
67		$\checkmark$	Ack timeout occurred (2nd occurrence = Ack retry limit exceeded).	0x4804	0	InstancelD	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Produced } \\ \text { ConnectionID (*) } \\ \hline \end{array}$	$\begin{array}{r} \text { Cons } \\ \text { Connecti } \end{array}$	$\begin{aligned} & \text { sumed } \\ & \text { ionID (*) } \end{aligned}$				ack_to_server
68			I/O transmission was unachievable (transmission data acquisition failed).	0x4901	0	InstancelD	0	$\begin{gathered} \mathrm{IF}_{-} \text {IoRead return } \\ \text { code } \end{gathered}$	$\begin{array}{r} \text { Prod } \\ \text { Connecti } \end{array}$	$\begin{aligned} & \text { luced } \\ & \text { ionID } \text { (*) }^{\prime} \\ & \hline \end{aligned}$				sendc_err_io
69			I/O transmission was unachievable (a TransportClassTrigger mismatch occurred).	0x4902	0	InstancelD	0	$\begin{gathered} \hline \text { TransportClass } \\ \text { Trigger } \\ \hline \end{gathered}$	$\begin{array}{r} \text { Prod } \\ \text { Connecti } \end{array}$	$\begin{aligned} & \text { luced } \\ & \text { ionID (*) } \\ & \hline \end{aligned}$				sendc_err_io
70			I/O transmission was unachievable (the connection status was other than "Established").	0x4903	0	InstancelD	0	state	$\begin{gathered} \text { Pror } \end{gathered}$	$\begin{aligned} & \text { luced } \\ & \text { ionID (*) } \end{aligned}$				sendc_err_io
71			An I/O reception was canceled (a TransportClassTrigger mismatch occurred).	0x4904	0	InstancelD	0	TransportClass Trigger	$\begin{array}{r} \text { Cons } \\ \text { Connecti } \end{array}$	$\begin{aligned} & \text { sumed } \\ & \text { ionID (*) } \end{aligned}$				sendc_err_io
72			An I/O reception was canceled (the connection status was other than "Established").	0x4905	0	InstancelD	0	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Received CANID } \\ \left({ }^{*}\right) \end{array} \\ \hline \end{array}$	Instanc	ce Type				recve_err_io
73	-		An I/O reception was canceled (the received CANID did not match the Instance reception CANID).	0x4906	0	InstancelD	0	$$	$\begin{aligned} & \text { Initial } \\ & \text { Charac } \end{aligned}$	$\begin{aligned} & \hline \text { Comm } \\ & \text { teristics } \end{aligned}$				sendc_err_io
74	-		I/O transmission was unachievable (an Instance Type mismatch occurred).	0x4907	0	InstancelD	0	state	Transmitted	CANID (*)				recve_err_io
75			I/O transmission was unachievable (an InitialCommCharacteristics mismatch occurred).	0x4908	0	InstancelD	0	Transmitted CANID (*)	$\begin{array}{r} \text { Cons } \\ \text { Connecti } \end{array}$	$\begin{aligned} & \text { sumed } \\ & \text { ionID (*) } \end{aligned}$				recve_err_io

[^2]| No. | C | S | Trace name | Trace code | Type | Trace data [0] |  | Trace data [1] | Trace data [2] |  | Trace data [3] |  | $\begin{gathered} \mathrm{Al} \\ \text { report } \end{gathered}$ | Log name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 76 | - |  | A transfer menu table was created (the I/O communication count setting was exceeded). | 0x4A07 | 1 | CreateCyclicMenu return code |  | 0x5108 | 0 |  | 0 |  |  |  |
| 77 | - |  | A transfer menu table was created (the I/O transmission port was not found). | 0x4A08 | 0 | CreateCyclicMenu return code |  | 0 | 0 |  | 0 |  |  |  |
| 78 | $\checkmark$ |  | A CAN transmission was started (Non-Fragment). |  |  |  |  |  |  |  |  |  |  | co_send |
| 79 |  | $\checkmark$ | A CAN transmission was started (Non-Fragment). |  |  |  |  |  |  |  |  |  |  | co_send |
| 80 | $\checkmark$ |  | A CAN transmission was started (fragmentation transmission). |  |  |  |  |  |  |  |  |  |  | co_send |
| 81 |  | $\checkmark$ | A CAN transmission was started (fragmentation transmission). |  |  |  |  |  |  |  |  |  |  | co_send |
| 82 | $\checkmark$ |  | A CAN transmission was started (Ack transmission). |  |  |  |  |  |  |  |  |  |  | co_send |
| 83 |  | $\checkmark$ | A CAN transmission was started (Ack transmission). |  |  |  |  |  |  |  |  |  |  | co_send |
| 84 |  | $\checkmark$ | A CAN transmission was started (error response transmission to a short request). |  |  |  |  |  |  |  |  |  |  | co_send |
| 85 | $\checkmark$ |  | A local station-addressed Explicit message was received. |  |  |  |  |  |  |  |  |  |  | co_rcv |
| 86 |  | $\checkmark$ | A local station-addressed Explicit message was received. |  |  |  |  |  |  |  |  |  |  | co_rcv |
| 87 |  |  | A local station-addressed I/O message was received. |  |  |  |  |  |  |  |  |  |  | co_rcv |
| 88 | - |  | An I/O reception was canceled (the connection status was other than "Established"). | 0x4B01 | 0 | InstanceID | 0 | state | Receive | CANID |  |  |  | recve_err_io |
| 89 | - |  | An I/O reception was canceled (the received CANID did not match the Instance reception CANID). | 0x4B02 | 0 | InstanceID | 0 | Received CANID <br> (*) | Con Connect | $\begin{aligned} & \text { imed } \\ & \text { onID }\left(^{*}\right) \end{aligned}$ |  |  |  | recve_err_io |
| 90 | - |  | An I/O reception was canceled (the beginning was received in a wait for the next Frag (processing was continued with this situation handled as the reception of the beginning)). | 0x4B03 | 0 | InstanceID | FragCnt | Received CANID (*) | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | io_frag_ilg |
| 91 | - |  | An I/O reception was canceled (fragmented data having an improper count was received in a wait for the beginning although Type = beginning). | 0x4B04 | 0 | InstanceID | FragCnt | $\begin{array}{\|c} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{array}$ | Received data[0] | Received data[1] | $\begin{array}{\|c\|} \hline \text { Received } \\ \text { data[2] } \\ \hline \end{array}$ | Received data[3] |  | io_frag_err |
| 92 | - |  | An I/O reception was canceled (the cumulative length of received fragmented data exceeded the maximum permissible received data length). | 0x4B05 | 0 | InstanceID | FragCnt | Received CANID <br> (*) | $\text { data }[0]$ $\begin{gathered} \text { Received } \\ \text { data[0] } \end{gathered}$ | Received data[1] | Received data[2] | $\begin{gathered} \text { Received } \\ \text { data[3] } \end{gathered}$ |  | io_frag_over |
| 93 | - |  | An I/O reception was canceled (fragmented data having an improper count was received in a wait for the next Frag). | 0x4B06 | 0 | InstanceID | FragCnt | $\begin{array}{\|c} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{array}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | io_frag_ilg |
| 94 | - |  | An I/O reception was canceled (fragmented data whose Type was other than the beginning was received in a wait for the beginning). | 0x4B07 | 0 | InstanceID | FragCnt | $\begin{gathered} \text { Received CANID } \\ \hline \end{gathered}$ | Received data[0] | Received data[1] | Received data[2] | Received data[3] |  | io_frag_ilg |
| 95 | - |  | An I/O reception was canceled (Ack was received). | 0x4B08 | 0 | InstanceID | FragCnt | $\begin{array}{\|c} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{array}$ | Received data[0] | Received data[1] | $\begin{array}{\|c} \hline \text { Received } \\ \text { data[2] } \\ \hline \end{array}$ | Received data[3] |  | io_frag_err |
| 96 | - |  | An I/O reception was canceled (0-byte data was received). | 0x4B09 | 0 | InstanceID | 0 | $\begin{array}{\|c} \hline \text { Received CANID } \\ \left({ }^{*}\right) \end{array}$ | Received data[0] | Received data[1] | $\begin{gathered} \text { Received } \\ \text { data[2] } \\ \hline \end{gathered}$ | Received data[3] |  | io_frag_err |
| 97 | - |  | An I/O reception was canceled (an Instance Type mismatch occurred). | 0x4B0A | 0 | InstanceID | 0 | Received CANID <br> (*) | Instan | Type |  |  |  | recve_err_io |
| 98 | - |  | An I/O reception was canceled (an InitialCommCharacteristics mismatch occurred). | 0x4B0B | 0 | InstanceID | 0 | $\begin{gathered} \text { Received CANID } \\ \hline \end{gathered}$ | Initial <br> Charac | omm | TransportC | assTrigger |  | recve_err_io |


No.	Trace name	Trace code	Type	Trace data [0]		Trace data [1]	Trace data [2]		Trace data [3]		Al report	Log name
1	"Open" transmission was unachievable (the State was the Configuring state).	0x5001	1	Remote station MACID	$\begin{array}{\|c\|} \hline \text { Transmission } \\ \text { In } \\ \hline \end{array}$	0	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	Transmitted data[3]		prot_err_ucmm
2	"Close" transmission was unachievable (the State was the Configuring state).	0x5002	1	Remote station MACID	$\begin{array}{\|c\|} \hline \text { Transmission } \\ \text { In } \\ \hline \end{array}$	0	$\begin{gathered} \text { Transmitted } \\ \text { data[0] } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data[3] } \end{gathered}$		prot_err_ucmm
3	"Open" transmission was unachievable (a connection with the remote device was already established).	0x5003	0	Remote station MACID	$\begin{gathered} \text { Transmission } \\ \text { In } \\ \hline \end{gathered}$	0	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	Transmitted data[3]	0x5103	dup_open
4	Heartbeat transmission was unachievable (the heartbeat transmission buffer was not successfully acquired).	0x5004	0	SysBufGet return code		Transmitted CANID (*)	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[3] } \\ \hline \end{array}$		
5	DupMacRsp transmission was unachievable (the transmission buffer was not successfully acquired).	0x5005	1	SysBufGet return code		Transmitted CANID (*)	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Transmitted } \\ \text { data[3] } \end{array}$		ucmm_sbuf_err
6	DupMacReq transmission was unachievable (the transmission buffer was not successfully acquired [a local event was restarted]).	0x5006	0	SysBufGet return code		Transmitted CANID (*)	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data }[0] \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[3] } \end{array}$		
7	Response transmission was unachievable (the OpenResponse transmission buffer was not successfully acquired).	0x5007	0	Remote station MACID	Reception In	SysBufGet return code	data[0] $\begin{array}{c\|} \hline \text { Received } \\ \text { data[0] } \end{array}$	Received data[1]	$\begin{gathered} \hline \text { Received } \\ \text { data[2] } \end{gathered}$	$\begin{gathered} \text { Received } \\ \text { data[3] } \\ \hline \end{gathered}$		
8	Response transmission was unachievable (the CloseResponse transmission buffer was not successfully acquired).	0x5008	0	Remote station MACID	Reception In	SysBufGet return code	Received data[0]	Received data[1]	Received data[2]	Received data[3]		
9	Response transmission was unachievable (the error response transmission buffer was not successfully acquired).	0x5009	0	Remote station MACID	Reception In	SysBufGet return code	Received data[0]	Received data[1]	Received data[2]	Received data[3]		
10	A response reception was canceled (the State was the Configuring state).	0x5101	0	Remote station MACID	Reception In	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
11	A response reception was canceled (the Group did not match the remote device type).	0x5102	0	Remote station MACID	Remote type	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
12	A response reception was canceled (a request was received [R/R=0]).	0x5103	1	Remote station MACID	Reception In	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
13	A response reception was canceled (the received data did not contain data before the service code).	0x5104	1	Remote station MACID	Reception In	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
14	A response reception was canceled (a connection with the remote device was already established).	0x5105	0	Remote station MACID	Reception In	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
15	A response reception was canceled (the message body format value was illegal).	0x5106	1	Remote station MACID	Reception In	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
16	A response reception was canceled (the G3 received data length was illegal).	0x5107	1	Remote station MACID	Reception In	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
17	A response reception was canceled (the transmitting end MsgID was illegal).	0x5108	1	Remote station MACID	Reception In	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
18	A response reception was canceled (the G2 received data length was illegal).	0x5109	1	Remote station MACID	Reception In	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
19	A response reception was canceled (the response to an Open request was improperly timed).	$0 \times 510 \mathrm{~A}$	0	Remote station MACID	Reception In	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		
20	A response reception was canceled (Create was not successful).	0x510B	1	Remote station MACID	Create return code	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
21	A response reception was canceled (CloseResponse was improperly timed).	0x510C	0	Remote station MACID	Reception In	Received CANID ( ${ }^{*}$ )	Received data[0]	Received data[1]	Received data[2]	Received data[3]		
22	A response reception was canceled (the CloseResponse data length was illegal).	0x510D	1	Remote station MACID	Reception In	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
23	A response reception was canceled (the heartbeat data length was illegal).	0x510E	1	0	Reception In	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
24	A response reception was canceled (an illegal response other than Error Response was received).	0x510F	1	0	Reception In	Received CANID ( ${ }^{*}$ )	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
25	A response reception was canceled (the Shutdown data length was illegal).	0x5110	1	0	Reception In	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm

(*) A byte-swapped value is set.

No.	Trace name	Trace code	Type	Trace data [0]		Trace data [1]		Trace data [2]		Trace data [3]		Al report	Log name
26	A request reception was canceled (the State was the Configuring state).	0x5201	0	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	Reception In	Received CANID (*)		Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
27	$\begin{aligned} & \begin{array}{l} \text { A request reception was canceled (Fragment }[\text { Frag }=1] \text { or Response } \\ [R / R=1]) \text {. } \end{array} \\ & \hline \end{aligned}$	0x5102	1	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	Reception In	Received CANID (*)		Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
28	A request reception was canceled (the received data did not contain data before the service code).	0x5103	1	$\begin{array}{\|c\|} \hline \text { Remote station } \\ \text { MACID } \end{array}$	Reception In	Received CANID (*)		Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
29	A request reception was canceled (the OpenRequest received data length was illegal).	0x5104	1	Remote station MACID	Reception In	Received CANID (*)		Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
30	A request reception was canceled (the CloseRequest received data length was illegal).	0x5105	1	$\begin{array}{\|c\|} \hline \text { Remote station } \\ \text { MACID } \\ \hline \end{array}$	Reception In	Received CANID (*)		Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
31	A DupMAC reception was canceled (the received data length was illegal).	0x5106	1	0	Reception In	Received CANID (*)		Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_ucmm
32	Reception reporting of a locally transmitted heartbeat was unachievable (the system message reception buffer was not successfully acquired).	0x5301	0	SysBufGet return code		Received CANID (*)		Transmitted data $[0]$	Transmitted data[1]	Transmitted data[2]	$\begin{gathered} \text { Transmitted } \\ \text { data[3] } \end{gathered}$		
33	Reception reporting of locally transmitted DupMacRsp was unachievable (the reception buffer was not successfully acquired).	0x5302	0	SysBufGet return code		Received CANID (*)		$\begin{gathered} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{gathered}$	$\begin{gathered} \text { Transmitted } \\ \text { data[1] } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data[3] } \\ \hline \end{gathered}$		
34	Reception reporting of locally transmitted DupMacReq was unachievable (the reception buffer was not successfully acquired).	0x5303	0	SysBufGet return code		Received CANID (*)		$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[3] } \\ \hline \end{array}$		
35	A duplicate MACID was reported (problems at remote stations).	0x5401	0	0	Reception In	Received CANID (*)		Received data[0]	Received data[1]	Received data[2]	Received data[3]	0x4101	
36	A duplicate MACID was reported (remote station illegality at remote and local stations).	0x5402	1	0	Reception In	Received CANID (*)		Received data[0]	Received data[1]	Received data[2]	Received data[3]	0x4101	
37	A duplicate MACID was detected (local-station graceful degradation).	0x5403	1	0x4201		0	Local station MACID	0		0		0x4201	
38	An error response was transmitted.	0x5501	0	$\begin{array}{\|c\|} \hline \text { Remote station } \\ \text { MACID } \end{array}$	Reception In	Error code		Received data[0]	Received data[1]	Received data[2]	Received data[3]		
39	An "Open" start was accepted.	0x5601	0	Remote station MACID	$\begin{array}{\|c} \hline \begin{array}{c} \text { Transmission } \\ \text { In } \end{array} \\ \hline \end{array}$	Remote station device type	Start source type	$\begin{gathered} \text { Transmitted } \\ \text { data[0] } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{array}$	Transmitted data[2]	$\begin{gathered} \text { Transmitted } \\ \text { data[3] } \\ \hline \end{gathered}$		
40	A "Close" start was accepted.	0x5602	0	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmission } \\ \text { In } \end{array}$	Remote station device type	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Start source } \\ \text { type } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data[1] } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{gathered}$	$\begin{gathered} \text { Transmitted } \\ \text { data[3] } \end{gathered}$		
41	A "Heartbeat" start was accepted.	0x5603	0	0		0		$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[5] } \\ \hline \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data[6] } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[7] } \\ \hline \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data[8] } \end{gathered}$		
42	A "Duplicate MACID Request" start was accepted (1st).	0x5611	0	0		0		0		0			
43	A "Duplicate MACID Request" start was accepted (2nd).	0x5612	0	0		0		0		0			
44	A "Duplicate MACID Response" start was accepted.	0x5613	0	0		0		0		0			
45	A response was received at the UCMM port.	0x5701	0	Remote station MACID	Reception In	Received CANID (*)		Received data[0]	Received data[1]	Received data[2]	Received data[3]		
46	A request was received at the UCMM port.	0x5702	0	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	Reception In	Received CANID (*)		Received data[0]	Received data[1]	Received data[2]	Received data[3]		
47	Heartbeat was received.	0x5703	0	$\begin{array}{\|c\|} \hline \text { Remote station } \\ \text { MACID } \\ \hline \end{array}$	Reception In	Received CANID ( ${ }^{*}$ )		Received data[0]	Received data[1]	Received data[2]	Received data[3]		
48	Shutdown was received.	0x5704	0	Remote station MACID	Reception In	Received CANID (*)		Received data[0]	Received data[1]	Received data[2]	Received data[3]		
49	Reception occurred at a Duplicate MACID port.	0x5711	0	0	Reception In	Received CANID (*)		Received data[0]	Received data[1]	Received data[2]	Received data[3]		

(*) A byte-swapped value is set
IterFace Object

No.	Trace name	Trace code	Type	Trace data [0]		Trace data [1]		Trace data [2]	Trace data [3]	$\begin{gathered} \mathrm{Al} \\ \text { report } \end{gathered}$	Log name	
1	A service request was accepted.	0x7010	0	Data length of detailed data section		Specified MACID	Service code	Detailed data section 1	Detailed data section 2		ser_accept	
2	"Open" was accepted.									open_accept		
3	"Close" was accepted.									close_accept		
4	"Explicit" was accepted.									exp_accept		
5	A service was called before the report of a previous service TI.	0x7011	0	Data length of	detailed data tion		Specified   MACID	Service code	Detailed data section 1	Detailed data section 2		ser_dup_wait
6	A service TI was reported.	0x7020	0	MA	CID		Error	ode	Error data	0		ser_ti_rpt
7	Service request acceptance was completed with the buffer full.	0x7021	0	MA	CID		Erro	ode	Error data	0		ser_ti_buf_busy
8	A response was reported.	0x7030	0	Data length of	detailed data tion	Specified MACID	Service code	Detailed data section 1	Detailed data section 2		ser_rsp_rpt	
9	A response was reported with the queue table full.	0x7031	0	Buffer type	Effective data length	CAN	(*)	Data section 1	Data section 2		ser_rsp_que_busy	
10	A response report was awaited (the service response buffer was full or a TI report was not made yet).	0x7032	0	MA	CID	Response	fer PP/CP	"Busy" flag	0		ser_rsp_wait	
11	A system message was reported.	0x7040	0	System message code	Data size	CAN	(*)	Data section 1	Data section 2		sys_msg_rpt	
12	A system message was reported with the queue table full.	0x7041	0	Buffer type	Effective data length	CAN	(*)	Data section 1	Data section 2		sys_msg_que_busy	
13	The buffer for system message reception was full.	0x7042	0	CAN	ID (*)	$\begin{array}{r} \hline \text { System me } \\ \text { PP } \\ \hline \end{array}$	age buffer   P $\qquad$	0	0		sys_msg_buf_busy	

$\left({ }^{*}\right)$ A byte-swapped value is set.
CAN Object

No.	Trace name	Trace code	Type	Trace data [0]		Trace data [1]	Trace data [2]		Trace data [3]		$\begin{gathered} \mathrm{Al} \\ \text { report } \end{gathered}$	Log name
1	A reception buffer acquisition failure trace was performed.	0x9010	0	SysBufferGet	return code	Received CANID	Received data[0]	Received data[1]	Received data[2]	Received data[3]		revbuf_ovf
2	A transmission buffer cancel trace was performed due to NetStatus inadequacy.	0x9020	1	NetSt	tatus	Transmitted CANID	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data[3] } \\ \hline \end{gathered}$		net_txerr
3	A reception buffer cancel trace was performed due to NetStatus inadequacy.	0x9021	0	NetS	tus	Received CANID	$\begin{gathered} \text { Received } \\ \text { data[0] } \end{gathered}$	Received data[1]	$\begin{gathered} \text { Received } \\ \text { data[2] } \end{gathered}$	$\begin{aligned} & \text { Received } \\ & \text { data[3] } \end{aligned}$		net_rxerr
4	A bus-OFF occurrence trace was performed.	0x9030	0	0		0	0		0			can_busoff
5	A bus -OFF recovery trace was performed.	0x9031	0	0		0	0		0			can_busoff_recover
6	A CAN transmission timeout detection trace was performed.	0x9040	0	0	$\begin{array}{\|c\|} \hline \text { Transmission } \\ \text { In } \end{array}$	Transmitted CANID	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \end{array}$	$\begin{gathered} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Transmitted } \\ \text { data[3] } \\ \hline \end{array}$	8101	can_txtout
7	An explicit message cancel trace was performed due to a CAN transmission timeout.	0x9050	0	$\begin{gathered} \text { Remote station } \\ \text { MACID } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmission } \\ \text { In } \end{array}$	Transmitted CANID	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data[1] } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data[3] } \\ \hline \end{gathered}$	8141	can_txtout_exp
8	A CAN chip error trace was performed.	0x9060	1	LEC		0	0		0			6 types including stuff_err
9	A trace was performed on the completion of a transmission message write into the CAN chip (other than I/O).	0x9070	0	Frame type	Transmission	Transmitted CANID	$\begin{gathered} \text { Transmitted } \\ \text { data[0] } \end{gathered}$	$\begin{gathered} \text { Transmitted } \\ \text { data[1] } \end{gathered}$	$\begin{gathered} \text { Transmitted } \\ \text { data[2] } \end{gathered}$	$\begin{gathered} \text { Transmitted } \\ \text { data[3] } \end{gathered}$		-
10	A CAN transmission completion trace was performed (other than I/O).	0x9080	0	0	$\begin{array}{\|c\|} \hline \text { Transmission } \\ \text { In } \end{array}$	Transmitted CANID	$\begin{array}{\|c} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data[1] } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data[3] } \\ \hline \end{gathered}$		can_tx
11	A CAN invalid interrupt was generated.	0x9090	1	Interrupt ID		0	0		0			can_invalid_int


$\left(^{*}\right)$ A byte-swapped value is set.

Connection Object (trace information stored by LQE570/575 only)

No.	c	s	Trace name	$\begin{aligned} & \text { Trace } \\ & \text { code } \end{aligned}$	Type	Trace data [0]		Trace data [1]	Trace data [2]		Trace data [3]		$\begin{gathered} \mathrm{Al} \\ \text { report } \end{gathered}$	Log name
1	$\checkmark$		(Proxy:) An Explicit request transmission to the slave was accepted (starting source: Proxy).	0x4003	0	InstanceID	$\begin{gathered} \hline \text { Transmission } \\ \text { In } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmitted CANID } \\ \left({ }^{*}\right) \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Transmitted } \\ \text { data[0] } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Transmitted } \\ \text { data[2] } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { d Transmitted } \\ \text { data[3] } \end{array}$		
2		$\checkmark$	(Proxy:) An Explicit request reception from the tool was accepted.	0x4004	0	InstancelD	Reception In	$\underset{\left(*^{*}\right)}{\substack{\text { Received CANID }}}$	$\begin{gathered} \text { Received } \\ \text { data[0] } \\ \hline \end{gathered}$	Received data[1]	$\begin{gathered} \hline \begin{array}{c} \text { Received } \\ \text { data[2] } \end{array} \\ \hline \end{gathered}$	Received data[3]		
3		$\checkmark$	(Proxy:) An Explicit response transmission to the tool was accepted (starting source: Proxy).	0x4005	0	InstanceID	$\begin{gathered} \text { Transmission } \\ \text { In } \end{gathered}$	0 (invalid)	$\begin{gathered} \text { Transmitted } \\ \text { data[ }[0] \end{gathered}$	$\begin{gathered} \text { Transmitted } \\ \text { data[1] } \end{gathered}$	$\begin{gathered} \text { Transmitted } \\ \text { data[2] } \end{gathered}$	$\begin{array}{\|c\|} \text { dransmitted } \\ \text { data }[3] \end{array}$		
4	$\checkmark$		(Proxy:) Transmission was unachievable (the connection status was other than "Established" [starting source: Proxy]).	0x4109	1	InstancelD	state	$\begin{array}{\|c} \hline \text { Transmitted CANID } \\ \left({ }^{*}\right) \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data }[0] \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \end{array}$	$\begin{array}{\|c\|} \text { d } \\ \begin{array}{c} \text { Transmitted } \\ \text { data[3] } \end{array} \\ \hline \end{array}$		prot_err_client
5	$\checkmark$		(Proxy:) Transmission was unachievable (InitialCommCharacteristics indicates other than G2OnliClient [starting source: Proxy]).	0x410A	1	InstancelD	Init.Comm.	$\begin{array}{\|c\|} \hline \text { Transmitted CANID } \\ \left({ }^{*}\right) \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Transmitted } \\ \text { data }[0] \end{array} \\ \hline \end{array}$		$\begin{gathered} \text { Transmitted } \\ \text { data[2] } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[ }[3] \end{array}$		prot_err_client
6	$\checkmark$		(Proxy:) Transmission was unachievable (a transmission double-start was attempted [starting source: Proxy]).	0x410B	1	InstanceID	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted CANID } \\ \left({ }^{*}\right) \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data }[0] \end{array}$	$\begin{array}{\|c} \hline \text { Transmitted } \\ \text { data }[1] \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \end{array}$	$\begin{array}{\|c\|} \hline \text { dransmitted } \\ \text { data[3] } \end{array}$		ser_dup
7		$\checkmark$	(Proxy:) Transmission was unachievable (the ProxyConnection status was other than "Established" [starting source: Proxy]).	x410C	0	InstancelD	ProxyState	$\begin{array}{\|c\|} \hline \text { Transmitted CANID } \\ (*) \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data[2] } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { dransmitted } \\ \text { data[3] } \end{array}$		prot_err_server
8		$\checkmark$	(Proxy:) Transmission was unachievable (the server process was not being performed).	0x410D	0	InstanceID	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remote station } \\ \text { MACID } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Transmitted CANID } \\ \left({ }^{*}\right) \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data[0] } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{array}$	$\begin{array}{\|c} \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { d Transmitted } \\ \text { data[3] } \end{array}$		prot_err_server
9		$\checkmark$	(Proxy:) A reception was canceled (a non-fragmented request was received with no data provided before InstanceID).	223	1	ance	Reception In	Received CANID   (*)	$\begin{aligned} & \text { Received } \\ & \text { data[0] } \end{aligned}$	Received data[1]	Received data[2]	Received data[3]		prot_err_server
10		$\checkmark$	(Proxy:) A reception was canceled (a fragmented request was received with no data provided before FragCount).	0x4224	1	InstanceID	$\begin{gathered} \text { Remote station } \\ \text { MACID } \end{gathered}$	$\begin{gathered} \text { Received CANID } \\ \left({ }^{*}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Received } \\ \text { data[0] } \\ \hline \end{gathered}$	$\begin{gathered} \text { Received } \\ \text { data[1] } \end{gathered}$	Received data[2]	$\begin{gathered} \text { Received } \\ \text { data[3] } \end{gathered}$		prot_err_server
11		$\checkmark$	(Proxy:) Response transmission was unachievable (response transmission buffer acquisition for a short request failed).	0x4607	1	InstanceID	Reception In	$\underset{{ }_{(*)}}{\substack{\text { Received CANID }}}$	$\begin{gathered} \text { Received } \\ \text { data[0] } \\ \hline \end{gathered}$	$\begin{gathered} \text { Received } \\ \text { data[1] } \end{gathered}$	$\begin{gathered} \text { Received } \\ \text { data[2] } \end{gathered}$	$\begin{gathered} \text { Received } \\ \text { data[3] } \end{gathered}$		
12			(IoFragment:) I/O transmission was unachievable (transmission data acquisition failed).	0x4909	0	Ins	0	$\mathrm{IF}_{-}$IoRead return	$\begin{array}{r} \text { Produ } \\ \text { Connectio } \end{array}$	luced ionID (*)		0		prot_err_io
13			(IoNonFragment:) An I/O reception was canceled (the cumulative length of received data exceeded the maximum permissible received data length).	0x490A	0	InstancelD	Data length	$\underset{\left({ }^{*}\right)}{\text { Received CANID }}$	$\begin{aligned} & \text { Received } \\ & \text { data[ }[0] \end{aligned}$	Received data[1]	Received   data[2]	Received   data[3]		io_data_ovf
14	-		(IoSequence:) I/O transmission was unachievable (an Instance Type mismatch occurred).	0x490B	0	InstanceID	0	$\begin{array}{\|c} \hline \text { Transmitted CANID } \\ \left({ }^{*}\right) \end{array}$	Instanc	ceType		0		prot_err_io
15			(IoSequence:) I/O transmission was unachievable (an InitialCommCharacteristics mismatch occurred).	0x490C	0	Instancel	0	$\begin{array}{\|c} \hline \text { Transmitted CANID } \\ \left({ }^{*}\right) \end{array}$	InitalComm	nCharacter.	TransportC	ClassTrigger		prot_err_io
16	-		(IoSequence:) An I/O reception was canceled (the cumulative length of received data exceeded the maximum permissible received data length).	0x4B0C	0	InstanceID	Data length	$\begin{gathered} \text { Received CANID } \\ \text { (*) }^{*} \end{gathered}$	Received data[0]	Received data[1]	Received data[2]	$\begin{gathered} \text { Received } \\ \text { data[3] } \\ \hline \end{gathered}$		io_data_ovf
17	-		(IoSequence:) An I/O reception was canceled (an Instance Type mismatch occurred).	0x4B0D	0	InstanceID	0	$\begin{array}{c\|} \hline \text { Consumed } \\ \text { ConnectionID (*) } \\ \hline \end{array}$	Instanc	ceType		0		recve_err_io
18	-		(IoSequence:) An I/O reception was canceled (an InitialCommCharacteristics mismatch occurred).	0x4B0E	0	tancelD	0	$\begin{array}{c\|} \hline \text { Consumed } \\ \text { ConnectionID (*) } \end{array}$	InitialComm	mCharacter.	TransportC	ClassTrigger		recvc_err_io
19	-		(IoSequence:) An I/O reception was canceled (the received CANID did not match the Instance reception CANID).	0x4B0F	0	InstancelD	0	Received CANID	$\begin{gathered} \text { Consu } \\ \text { Connectic } \end{gathered}$	$\begin{aligned} & \text { sumed } \\ & \text { tionID (*) } \end{aligned}$		0		recve_err_io
20	-		(IoSequence:) An I/O reception was canceled (the connection status was other than "Established").	0xaB10	0	InstanceID	0	state	Received C	CANID (*)		0		recve_err_io
21	-		(IoSequence:) An I/O reception was canceled (fragmented data of 0 bytes long was received [the fragmented data header was missing]).	0xaB11	0	Instancel	0	$\underset{{ }_{(*)}}{\substack{\text { Received CANID }}}$	$\begin{gathered} \hline \begin{array}{c} \text { Received } \\ \text { data[0] } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { Received } \\ \text { data[1] } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Received } \\ \text { data[2] } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Received } \\ & \text { data[3] } \end{aligned}$		io_frag_err
22	-		(IoSequence:) An I/O reception was canceled (the beginning was received in a wait for the next Frag (processing was continued with this situation handled as the reception of the beginning)).	0xaB12	0	InstanceID	FragCnt	$\underset{(*)}{\text { Received CANID }}$	$\begin{aligned} & \text { Received } \\ & \text { data } 00] \end{aligned}$	$\begin{aligned} & \text { Received } \\ & \text { data[1] } \end{aligned}$	Received data[2]	$\begin{aligned} & \text { Received } \\ & \text { data }[3] \end{aligned}$		io_frag ilg
23			(IoSequence:) An I/O reception was canceled (fragmented data whose type was other than the beginning or end to which FragCnt is set equal, was received in a wait for the beginning)).	0xaB13	0	InstanceID	FragCnt	$\underset{\left({ }^{*}\right)}{\text { Received CANID }}$	Received data $[0]$	Received data[1]	Received	Received		io_frag_err
24			(IoSequence:) An I/O reception was canceled (the cumulative length of received fragmented data exceeded the maximum permissible received data length).	0xaB14	0	InstanceID	Data length	$\underset{(*)}{\text { Received CANID }}$	$\begin{aligned} & \text { Received } \\ & \text { data[0] } \end{aligned}$	$\begin{aligned} & \text { Received } \\ & \text { data[1] } \end{aligned}$	$\begin{aligned} & \text { Received } \\ & \text { data[2] } \end{aligned}$	$\begin{aligned} & \text { Received } \\ & \text { data }[3] \end{aligned}$		io_data_ovf

[^3]| No. | C | s | Trace name | $\begin{aligned} & \text { Trace } \\ & \text { code } \end{aligned}$ | Type | Trace data [0] |  | Trace data [1] | Trace data [2] |  | Trace data [3] |  | $\begin{gathered} \mathrm{Al} \\ \text { report } \end{gathered}$ | Log name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 |  |  | (IoSequence:) An I/O reception was canceled (fragmented data having an improper fragment count was received in a wait for the next Frag). | 0xaB15 | 0 | InstancelD | FragCnt | $\begin{array}{\|c} \hline \text { Received CANID } \\ { }_{(*)} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Received } \\ \text { data[0] } \end{array} \\ \hline \end{array}$ | $\begin{gathered} \hline \text { Received } \\ \text { data[1] } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \begin{array}{c} \text { Received } \\ \text { data[2] } \end{array} \\ \hline \end{gathered}$ | $\begin{gathered} \hline \begin{array}{c} \text { Received } \\ \text { data[3] } \end{array} \\ \hline \end{gathered}$ |  | io_frag_ilg |
| 26 |  |  | (IoSequence:) An I/O reception was canceled (fragmented data whose Type was other than the beginning was received in a wait for the beginning). | 0xaB16 | 0 | InstancelD | FragCnt | $\underset{\left({ }^{*}\right)}{\text { Received }}$ | $\begin{aligned} & \text { Received } \\ & \text { data[0] } \end{aligned}$ | data[1] <br> Received data[1] | $\begin{aligned} & \text { Received } \\ & \text { data[2] } \end{aligned}$ | $\begin{aligned} & \text { Received } \\ & \text { data }[3] \end{aligned}$ |  | io_frag_ilg |
| 27 | - |  | (IoSequence:) An I/O reception was canceled (Ack was received). | 0xaB17 | 0 | InstancelD | FragCnt | Received CANID <br> (*) | $\begin{gathered} \hline \begin{array}{c} \text { Received } \\ \text { data[0] } \end{array} \\ \hline \end{gathered}$ | Received data[1] | Received data[2] | Received data[3] |  | io_frag_err |
| 28 | $\checkmark$ |  | (Proxy:) Explicit transmission semaphore flag acquisition failed (G2OnliClient). | 0x4C01 | 0 | InstancelD | $\begin{gathered} \text { Starting } \\ \text { source type } \end{gathered}$ | 0 (invalid) | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data }[1] \\ \hline \end{array}$ | $\begin{array}{\|c} \hline \text { Transmitted } \\ \text { data[2] } \end{array}$ | $\begin{array}{\|c} \hline \text { Transmitted } \\ \text { data[3] } \\ \hline \end{array}$ | 0x710B | exp_sem_busy |
| 29 | $\checkmark$ |  | (Proxy:) Explicit transmission semaphore flag acquisition failed (G2OnliClient). | 0x4C02 | 0 | Instancel | Starting source type | $\underset{(*)}{\operatorname{Transmitted~CANID}}$ | Transmitted data $[0]$ | Transmitted | Transmitted | $\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data }[3] \end{array}$ |  | $\begin{aligned} & \mathrm{exp}_{\text {exp_sem_busy_ }}^{\text {proxy }} \end{aligned}$ |
| 30 | $\checkmark$ |  | (Proxy:) Proxy non-fragmented data delivery was unachievable (slave-totool delivery transmission buffer acquisition failed). | 0x4C03 | 1 | InstanceID | Reception In | $\underset{{ }_{(*)}}{\substack{\text { Received CANID }}}$ | $\begin{gathered} \text { Received } \\ \text { data[0] } \\ \hline \end{gathered}$ | Received data[1] | $\begin{gathered} \text { Received } \\ \text { data[2] } \\ \hline \end{gathered}$ | Received data[3] |  |  |
| 31 |  | $\checkmark$ | (Proxy:) Proxy non-fragmented data delivery was unachievable (tool-toslave delivery transmission buffer acquisition failed). | 0x4C04 | 1 | InstanceID | Reception In | $\underset{\left({ }^{( }\right)}{\text {Received CANID }}$ | $\begin{gathered} \hline \text { Received } \\ \text { data[0] } \end{gathered}$ | Received data[1] | $\begin{gathered} \text { Received } \\ \text { data[2] } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Received } \\ & \text { data[a] } \end{aligned}$ |  |  |
| 32 | $\checkmark$ |  | (Proxy:) Proxy fragmented data delivery was unachievable (slave-to-tool delivery transmission buffer acquisition failed). | 0x4C05 | 1 | InstancelD | Reception In | $\underset{\left({ }^{*}\right)}{\substack{\text { Receiived CANID }}}$ | $\begin{gathered} \text { Received } \\ \text { data[0] } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Received } \\ \text { data[1] } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Received } \\ \text { data[2] } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Received } \\ \text { data[3] } \\ \hline \end{gathered}$ |  |  |
| 33 |  | $\checkmark$ | (Proxy:) Proxy non-fragmented data delivery was unachievable (tool-toslave delivery transmission buffer acquisition failed). | 0x4C06 | 1 | InstanceID | Reception In | Received CANID <br> (*) | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Received } \\ \text { data[0] } \end{array} \\ \hline \end{array}$ | Received data[1] | $\begin{array}{\|c} \hline \begin{array}{c} \text { Received } \\ \text { data[2] } \end{array} \\ \hline \end{array}$ | Received data[3] |  |  |

(*) A byte-swapped value is set.
UCMM Object (trace information stored by LQE570/575 only)

No.	Trace name	Trace code	Type	Trace data [0]		Trace data [1]	Trace data [2]		Trace data [3]		$\begin{gathered} \mathrm{Al} \\ \text { report } \end{gathered}$	Log name
1	(Proxy:) A request reception was canceled (the OpenRequest received data length was illegal).	0x5801	1	Remote station MACID	$\left\lvert\, \begin{gathered} \text { Reception } \\ \text { In } \end{gathered}\right.$	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_proxy
2	(Proxy:) Response transmission was unachievable (the OpenResponse transmission buffer was not successfully acquired).	0x5802	0	Remote station MACID	$\underset{\text { In }}{\text { Reception }}$	SysBufGet return code	Received data[0]	Received data[1]	Received data[2]	Received data[3]		
3	(Proxy:) A request reception was canceled (the OpenRequest received data length was illegal).	0x5803	1	Remote station MACID	$\left\lvert\, \begin{gathered} \text { Reception } \\ \text { In } \end{gathered}\right.$	Received CANID (*)	Received data[0]	Received data[1]	Received data[2]	Received data[3]		prot_err_proxy
4	(Proxy:) Response transmission was unachievable (the OpenResponse transmission buffer was not successfully acquired).	0x5804	0	Remote station MACID	$\left\lvert\, \begin{aligned} & \text { Reception } \\ & \text { In } \end{aligned}\right.$   In	SysBufGet return code	$\begin{aligned} & \text { Received } \\ & \text { data }[0] \end{aligned}$	Received data[1]	$\begin{gathered} \text { Received } \\ \text { data[2] } \\ \hline \end{gathered}$	Received data[3]		
5	(Proxy:) An error response was transmitted.	0x5805	0	Remote station MACID	$\begin{array}{\|c\|} \hline \text { Reception } \\ \text { In } \end{array}$	Error code	Received data[0]	Received data[1]	Received data[2]	Received data[3]		
6	(Proxy:) Response transmission was unachievable (the ErrorResponse transmission buffer was not successfully acquired).	0x5806	0	Remote station   MACID	$\begin{array}{\|c} \text { Reception } \\ \text { In } \end{array}$	SysBufGet return code	Received data[0]	Received data[1]	Received data[2]	Received data[3]		


No.	Trace name	Trace code	Type	Trace data [0]	Trace data [1]	Trace data [2]		Trace data [3]		$\begin{array}{\|c\|} \hline \mathrm{Al} \\ \text { report } \end{array}$	Log name
1	An I/O transmission start was accepted.	0x7012	0	Port number	$\begin{gathered} \text { Transmission request } \\ \text { data length } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[3] } \\ \hline \end{array}$		io_rcv_que_busy
2	I/O reception P.TI reporting was co mpleted.	0x7050	0	Port number	Error code	Error data		0			io_rcv_wait
3	An I/O reception was accepted.	0x7051	0	Port number	0	Received data[0]	Received data[1]	Received data[2]	Received data[3]		io_send_dup_wait
4	The I/O reception report queue table was full.	0x7052	0	Port number	Queue PP	Queue CP		Received data[0]	Received data[1]		io_rcv_que_busy
5	An I/O reception report was awaited (the reception notification buffer was full).	0x7053	0	Port number	Reception notification area PP	Reception notification area CP		0			io_rcv_wait
6	An I/O transmission was started before the previous I/O transmission TI was reported.	0x7054	0	Port number	Queue PP	Queue CP		$\stackrel{0}{\text { Detailed data section } 2}$			io_send_dup_wait
7	The service request acceptance completion buffer was full.	0x7055	0	Port number	P.TI report area PP	P.TI report area CP		0			io_rcv_buf_busy
8	I/O reception reporting was completed.	0x7056	0	Port number	Received data length	Received data[0]	Received data[1]	Received data[2]	Received data[3]		io_send_dup_wait


No.	Trace name	Trace code	Type	Trace data [0]	Trace data [1]		Trace data [2]		Trace data [3]		$\begin{gathered} \mathrm{Al} \\ \text { report } \end{gathered}$	Log name
1	An I/O sequence control frame cancel trace was performed due to a CAN transmission timeout.	0x9051	0	Transmission In	Transmitted CANID		$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[3] } \\ \hline \end{array}$		can_txtout_ioseq
2	An I/O sequence control frame cancel trace was performed due to a CAN transmission timeout.	0x9052	0	Transmission In	Transmitted CANID (*)		$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[0] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[1] } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Transmitted } \\ \text { data[2] } \\ \hline \end{array}$	$\begin{gathered} \text { Transmitted } \\ \text { data[3] } \\ \hline \end{gathered}$		can_txtout_ioseq
3	A CAN chip error trace was performed.	0x9061	1	IRR register	Rec internal work area	Rec register	Tec internal work area	Tec register	0			can_errpassive can_rec_cntup can_rec_entup
					Rec register	Rec internal work area	Rec register	Rec internal work area				
4	A CAN invalid interrupt was generated.	0x9061	1	IRR register	0		0		0			can_invalid_int
5	A remote frame reception was performed.	0x90A0	1	IRR register	RXPR register		RFPR register		0			can_rmtrcv

$\left({ }^{*}\right)$ A byte-swapped value is set.

### 3.16 ET.NET (Model LQE720) Error Information

### 3.16.1 Error codes from the socket handler

The table below enumerates all error codes that are returned from the socket handler to report on the occurrence of errors. In addition to these error codes, the table also provides information on the error causes and the user actions required to solve the problems.

Table 3-17 Error Codes from the Socket Handler (1/2)

Error code	Brief description	Cause	Required action
/F000	Connection not established yet	A connection is not established yet, or the port is released when the handler is called.	Establish a connection by calling tcp_open() or tcp_popen(), and then call the handler.
/F010	Invalid socket ID	- The socket ID is not within the permitted range (for TCP, $/ 01 \leq \mathrm{ID} \leq$ $/ 18$; for UDP, $/ 20 \leq \mathrm{ID} \leq / 37$ ); or   - An unused socket ID or an already released socket ID is specified; or   - A connection is not made or opened yet (only in tcp_accept()).	Check the user program (e.g., check if a return value from tcp_open() or tcp_popen() is used as the socket ID).
/F011	Socket count limit exceeded	An attempt has been made to register more sockets than permitted. (The combined total of all sockets for TCP and UDP must be 24 or less.)	Close any unused sockets (by calling tcp_close() or udp_close()) and then reestablish a connection by calling tcp_open() or tcp_popen().
/F012	Socket driver timed out	- No response has been obtained from the socket driver within a fixed time period; or   - The requested transmission is timed out due to a "send window full" condition or some other cause (only in tcp_send()).	Clear the connection by calling tcp_close(), and then try to re-establish a connection by calling tcp_open() or tcp_popen(). If communication cannot be achieved by repeating such an attempt, check if the connectors, cables, and remote station involved are all functioning normally. If the same error has occurred in tcp_close(), clear the connection by calling tcp_abort() and then re-establish a connection by calling tcp_open() or tcp_popen().
/F013	Module stopped	A socket driver has not been able to be initialized completely within 100 seconds when the handler was called.	Replace the module.
/F020	Illegal send data length	A send data length used exceeded the permitted limit (for TCP, $1 \leq$ data length $\leq 4096$; for UDP, $1 \leq$ data length $\leq$ 1472).	Check the user program.
/F021	Illegal receive data length	A receive data length used exceeded the permitted limit ( $1 \leq$ data length $\leq 4096$ ).	Check the user program.

Table 3-17 Error Codes from the Socket Handler (2/2)

Error code	Brief description	Cause	Required action
/F0FF	Port released	- A port has been released (due to an RST reception) when the handler was called (this error is related to tcp_open()); or   - A port was already released when the handler was called (this error is related to tcp_send() or tcp_receive()).	- Re-establish a connection by calling tcp_open() or tcp_popen(); or   - Clear the connection by calling tcp_close(), and then re-establish a connection by calling tcp_open() or tcp_popen().
/FFF0	Invalid address	- As the IP address and/or port number of a destination station, zero values (0s) are used in both udp_open() and udp_send(); or   - An attempt has been made to send data to a remote station for which no routing information is set yet (this error is only related to udp_send()).	- Check the user program; or   - Set routing information for the remote station.
/FFF3	Illegal parameter	An illegal parameter has been detected.	Check the user program (specifically, the set values of the arguments padr, buf, outinf, and tim).
/FFF5	Connection operation timed out	No response has been obtained from the remote station.	Clear the connection by calling tcp_close(), and then try to re-establish a connection by calling tcp_open() or tcp_popen(). If communication cannot be achieved by repeating such an attempt, check if the connectors, cables, and remote station involved are all functioning normally.
/FFF8	FIN received	An FIN has been received from the remote station.	Close the socket by calling tcp_close().
/FFFA	Connection forcibly terminated	The connection has been forcibly terminated by (transmission of an RST from) the remote station. (tcp_receive() was called after the RST reception.)	Clear the connection by calling tcp_close(), and then re-establish a connection by calling tcp_open() or tcp_popen().
/FFFD	Duplicate socket	The same socket (using the remote station's IP address or port number, or the local station's port number) is already existent.	Check the user program. This type of error may occur when an attempt is made to close the socket by calling tcp_close() in the local station. (*)
/FFFE	Illegal control block	The maximum permitted number of usable sockets has been exceeded.	Close unused sockets (by calling tcp_close() or udp_close()) and re-establish a connection by calling tcp_open() or tcp_popen().
/FFFF	Internal buffer full	- The send buffer has become full (in udp_send()); or   - Internal registered area has become full (in route_add() or arp_list()).	- Wait for a while and then call udp_ send() again; or   - Delete unused registration information and then call them again.

(*) A "duplicate socket" error occurs in the following way:
If a socket is opened by calling tcp_open() or tcp_popen() with a specification of the local station's port number, and an attempt is made to close that socket by calling tcp_close in the same local station, then the socket will immediately enter the TIMEWAIT state (see the connection state transitions diagram under "3.19.2 Network information details") and will remain open for approximately 20 seconds after the end of execution of that tcp_close(). In this situation, if an attempt is made to open that socket by calling tcp_open() or tcp_popen() with a specification of the same port number, a "duplicate socket" error (error code $=/$ FFFD $)$ will result.
If a "duplicate socket" error occurs, do one of the following:

- Wait 20 seconds or more after calling tcp_close() and then call tcp_open() or tcp_popen().
- Close the socket by calling tcp_abort().
- Open the socket by calling tcp_open() or tcp_popen() with no specification of the local station's port number, in which case a port number currently not in use is obtained from among those in the range 1024 to 2047.


### 3.17 Error Freeze Information

On detection of a hardware error, the modules listed below light the error LED indicator, save the error freeze information in a predetermined area, and then stop their operation.
ET.NET, SV.LINK, OD.RING, SD.LINK, J.NET, J.NET-INT, IR.LINK, FL.NET, EQ.LINK, RS232C, RS-422
For the address at which the error freeze is saved, see the information under "3.8 Memory Maps for Optional Modules." The error freeze information is stored in the following format:

.-This piece of information is saved only for J.NET, J.NET-INT, IR.LINK, RS-232C, and RS-422 modules.

Note: The "**" portion of each address above varies with the module type in which a hardware error is detected and with the main/sub setting used.

The table below lists the error codes stored as error freeze information.

No.	Error code	Meaning		
		J.NET, J.NET-INT	IR.LINK	OD.RING, SD.LINK
1	/0010	Bus error		
2	/0011	Invalid address		
3	/0012	Invalid instruction		
4	/0013	Division by zero		
5	/0014	Privilege violation		
6	/0015	WDT timeout error		
7	/0016	Format error		
8	/0017	Spurious Interrupt		
9	/0018	Unused exception		
10	/0019	Parity error		
11	/001A	Power failure warning		
12	/0100	Module switch setting error		
13	/0101	Baud rate switch setting error		CPL switch setting error
14	/0102	ROM1 checksum error		
15	/0103	RAM1 compare error		
16	/0105	RAM2 compare error		
17	/0107	DMA1 send error		-
18	/0108	DMA2 send error		
19	/0109	DMA1 receive error	-	
20	/010A	DMA2 receive error	-	
21	/010B	ROM3 checksum error		
22	/010C	ROM erasing error (program)		ROM erasing error (program)
23	/010D	ROM writing error (program)		ROM writing error (program)
24	/010E	ROM erasing error (parameter)		ROM erasing error (parameter)
25	/010F	ROM writing error (parameter)		ROM writing error (parameter)
26	/0110	ROM writing error (writing over 50000 times)		
27	/0111	-	-	Duplicate CPL No.
28	/0112	-	-	-
29	/0113	-	-	-
30	/0114	-	-	-
31	/0200	-	-	-


No.	Error   code	Meaning		
		ET.NET, FL.NET, SV.LINK	EQ.LINK	RS-232C, RS-422
1	/0010	Bus error		
2	/0011	Invalid address		
3	/0012	Invalid instruction		
4	/0013	Division by zero		
5	/0014	Privilege violation		
6	/0015	WDT timeout error		
7	/0016	Format error		-
8	/0017	Spurious Interrupt		
9	/0018	Unused exception		
10	/0019	Parity error		
11	/001A	Power failure warning		-
12	/0100	Module switch setting error		
13	/0101	-	-	-
14	/0102	ROM1 checksum error		
15	/0103	RAM1 compare error		
16	/0105	RAM2 compare error		-
17	/0107	-	-	
18	/0108			
19	/0109			
20	/010A			
21	/010B	ROM3 checksum error		
22	/010C	-	-	
23	/010D			
24	/010E			
25	/010F			
26	/0110			
27	/0111			
28	/0112	Microprogram error		LGB setting error
29	/0113	IP address not registered		-
30	/0114	MAC address not registered		
31	/0200	Route information setting error	-	

The figure below shows the contents of the stack frame provided in the error freeze information table.
<Module types>
FL.NET(LQE500), OD.RING(LQE510/515), ET.NET(LQE520), SV.LINK(LQE521), SD.LINK(LQE530),
J.NET(LQE540), J.NET-INT(LQE545), IR.LINK(LQE546), EQ.LINK(LQE701)

Format \$C (4-word, 6-word and bus error stack frame)		
Status register		
Return program		
		Vector offset
Address at which a fault		
		tus register before eption occurrence
Fault-caused vector offset		
Program counter for instruction		
in which a fault has occurred.		
Internal-transfer count register		
1	0	Privilege status word

Figure 3-9 Stack Frame Details (1)

## 3 TECHNICAL SUPPORT INFORMATION

<Module types>
RS-232C (LQE560), RS-422 (LQE565)


R/W (Read/Write): = 0: Write; = 1: Read.
I/N (Instruction/Non-instruction): = 0: Instruction; = 1: Non-instruction.
FC: Function code

Figure 3-10 Stack Frame Details (2)

### 3.18 Memory Dump Procedure

To dump the S10V controller's memory, start the S10V BASE SYSTEM by choosing [Start] [Programs] - [Hitachi S10V] - [S10V BASE SYSTEM] on the personal computer connected with the S 10 V controller. Then, click the Memory Dump button. The [Memory Dump] window shown below then appears, which enables you to dump the S10V controller's memory. For details on the S10V BASE SYSTEM, refer to the "BASIC MODULES (manual number SVE-1-100)."
(1) The [Memory Dump] window shown below appears, which enables you to dump the memory to a specified file.

(2) If you want to change the displayed file name, use one of the two methods: 1) directly enter the desired file name, or 2 ) click the Reference button to display the [Save As] window, and when the window appears, specify the desired folder and file:

(3) When you have specified the desired folder and file, click the Save button. Then, the specified folder and file appears in the "File name" box. If you need not change the folder and file displayed in Step (2), just click the Cancel button.
(4) Choose either the "Whole memory" or the "Specifies a range" option in the "Preserving range" group. If you have chosen the latter option, you can enter values in both the "Top address" and "Save size" boxes. In these boxes, specify the starting address of the memory area you want to dump and the size of that area.

(5) Choose either the "ASCII form" or the "Binary form" option in the "Dump file format" group. If you choose the former option, the requested memory dump will be converted to ASCII format and stored in the specified file. If you choose the latter, it will be stored in binary format, where all numeric values are represented two characters per byte, as described below.

- Binary file format

Any file in binary file format has 4 K bytes of 16 -bytes-per-area header information added to its beginning as the header. If the specified "Preserving range" extends over non-dumpable areas, only dumpable-areas information is output to the header. All non-dumpable areas are marked with dots (".") in binary file format.
Dumpable and non-dumpable areas information is represented in units of four bytes in binary file format, as shown below.

- Offsets in file (i.e., line numbers relative to the beginning of a collection of memory dump information)
- Starting addresses of areas subjected to dumping
- Sizes of areas subjected to dumping
- Unused


Figure 3-11 Binary File Format for Memory Dumps
(6) If you want to carry out a memory dump at high speed, check the "High speed save mode" checkbox. If not (i.e., you are carrying it out at standard speed), make sure that the said checkbox is deselected.
(7) If you want to save the content of the optional-modules area (/0080 0000 to /00FF FFFF), check the "Save option module area" checkbox. In this case, only the information on the installed optional modules will be saved.
If you need not save the optional-modules area content, make sure that the said checkbox is deselected. If the said checkbox is deselected but the starting address of an optional-modules area is specified, a starting-address specification error will result.
(8) To carry out a memory dump in the specified file format, click the Save button.
(9) When the memory dump is complete, click the Close button.


#### Abstract

Memory dumps in high-speed save mode may cause an increased CPU load in the S10V controller. In these cases, if a ladder program or task is running, their performance may be adversely affected. To avoid this, before you carry out a memory dump in high-speed save mode, make sure that nothing is running on the controller's CPU. If an Ethernet connection is used for memory dump, the "High speed save mode" checkbox is always dimmed in a checked state and a requested memory dump is performed in high-speed save mode.


- Dumpable memory ranges

The figure below shows all memory ranges that can be subjected to memory dumps. If you dump the entire memory, only all the dumpable memory ranges are dumped. If you dump a specified memory range, it is dumped as long as its starting address is not within any nondumpable range. In addition, if a specified memory range includes a non-dumpable range(s), only the dumpable portion is dumped.
If an RS-232C or ET.NET connection is used for memory dump, the CMU area cannot be dumped because it is not accessible.
Dumpable memory ranges for the task space, GLBR, GLBW, and IRSUB areas vary depending on RPDP's memory area definitions. The defined ranges for these four areas total up to 16 MB .


Figure 3-12 Dumpable Memory Ranges

### 3.19 Network Information

### 3.19.1 Displaying network information

To display system-maintained network information on screen, start the S10V BASE SYSTEM by choosing [Start] - [Programs] - [Hitachi S10V] - [S10V BASE SYSTEM] on the personal computer connected with the S10V controller. Then, click the Display Status of Network button. The network information functions list window then appears. In this window, click the Display Status of Network button. Then, the [Display Status of Network] window shown below appears, which enables you to view CMU/ET.NET network information. For details on the S10V BASE SYSTEM, refer to the "BASIC MODULES (manual number SVE-1-100)."

This network information display feature may be used only when CMU (model LQP520) and ET.NET (model LQE720) modules are installed. It may not be used with ET.NET (model LQE520) modules.
(1) The [Display Status of Network] window appears on screen:

Display Status of Network									
- Information of Connection module			Selection of Display module   Module name   CMU			Close			
Module name CMU   IP address 192.192 .192 .1						Refresh ( R )			
			Save (0)						
Active socket	Interface ${ }^{\text {M }}$ Memory	ry \| Route				ICMP ${ }^{\text {TCP }}$	UDP	Addition \| ARP	
Proto	Local Addresss	Port	Foreign Address	Port	State				
TCP	192.192.192.1	60015	192.192.192.11	1047	ESTABLIS				
TCP	192.192.192.1	4303	192.192.192.11	1046	ESTABLIS				
TCP	*	7003	*	*	LISTEN				
TCP	*	7002	*	*	LISTEN				
TCP	*	7001	*	*	LISTEN				
TCP	*	7000	*	*	LISTEN				
TCP	*	60016	*	*	LISTEN				
TCP	192.192.192.1	60015	*	*	LISTEN				
TCP	*	4305	*	*	LISTEN				
TCP	*	4304	*	*	LISTEN				
TCP UDP	*	4302	*	*	LISTEN				
UDP	*	60013	*	*					

## 3 TECHNICAL SUPPORT INFORMATION

(2) From the "Module name" pulldown menu in the "Selection of Display module" box, choose the module for which you want to display network information. Then, by clicking the desired tab in the window, choose the type of network information you want to display on screen. The table below is a list of all displayable network information types:

Type (tab item)	Description
Active socket	Active socket information
Interface	Active network interface information
Memory	Send-receive-buffer management information
Route	Routing information
IP	IP-protocol statistical information
ICMP	ICMP-protocol statistical information
TCP	TCP-protocol statistical information
UDP	UDP-protocol statistical information
Addition	Interface count information
ARP	ARP table information

(3) When you have selected all necessary items, click the Refresh button. Then, the requested network information is displayed on screen. For details on the displayed information, see the description under "3.19.2 Network information details."

### 3.19.2 Network information details

(1) Socket information

The socket information displayed as shown below is a list of the currently existing network connections.

where:

- Proto

The name of the protocol used over the connection.

- Local Address

The IP address of the local host (source of connection). If the IP address is not bound with a socket, an asterisk ("*") is displayed instead.

- Port

The port number of the local host (source of connection).

- Foreign Address

The IP address of the remote host (destination of connection). If the IP address is not bound with a socket, an asterisk ("*") is displayed instead.

- Port

The port number of the remote host (destination of connection). If the IP address is not bound with a socket, an asterisk ("*") is displayed instead.

- State

The connection status of the TCP protocol. The connection state is one of the following 11 states:

Displayed symbol	Meaning
CLOSED	Currently not in use.
LISTEN	Waiting for a port to become available.
SYN_SENT	Although it issued a connect (SYN) request to the server, has not   received a response (ACK) from it.
SYN_RECEIVED	Has just received a connect (SYN) request from a client.
ESTABLISHED	Currently performing data communication using an established TCP   connection.
FINWAIT1	Server has sent out a FIN.
FINWAIT2	Has received an ACK.
CLOSEWAIT	Has received a FIN from the server.
LASTACK	Waiting for an ACK response to be sent out to the FIN.
CLOSING	Has received a FIN and is closing the connection.
TIMEWAIT	Waiting for the connection to be terminated.

All possible state transitions between the connection states are as follows:

> Processing (reception/transmission flag):
> ACK: Positive acknowledgement flag
> SYN: Connection check flag
> FIN: End-of-connection flag
> x: (no flag provided)


- If the TCP protocol is used over more than 150 ports, no socket information is displayed for the excess port(s) and the UDP protocol.
- If the TCP protocol is used over more than 80 ports, some of the socket information for the UDP protocol may not be displayed.


## 3 TECHNICAL SUPPORT INFORMATION

## (2) Interface information

The interface information displayed as shown below is concerning the network interfaces currently in operation and includes input/output packet count information.

where:
(1) slot

The slot number of the slot in which a module subjected to this display process is mounted.
(2) kind

Always the string "EPORT" is displayed as this item.
(3) MTU

The maximum transmission unit (MTU) that refers to the maximum size of data blocks into which a set of data is divided and that is transmittable by a single transfer.
(4) IP address

IP address used.
(5) netmask

Subnet mask used.
(6) broadcast address

Broadcast address used.
output request count
A count of the number of send requests that were accepted for message transmission.output count(success)
A count of the number of message transmissions that were done successfully.
(9) output discard error count

A count of the number of message transmissions that failed due to memory shortage.
(10) output error count

A count of the number of message transmission failure reports that were made by hardware following a send request issued by the driver to the hardware.
deliver count
A count of the number of received-message deliveries that were made to users.
input count
A count of the number of message reception reports that were made by hardware.
input discard error count
A count of the number of message receptions that failed due to memory shortage.
(14)
input error count
A count of the number of message reception failure reports that were made by hardware following a "get message" request issued by the driver to the hardware.

## 3 TECHNICAL SUPPORT INFORMATION

(3) Memory information

The memory information displayed as shown below is the statistics maintained by the memory management routine.

where:

- CURRENT: The current state of mbuf.
- MAX: The status of mbuf at its maximum utilization.
- HIGH: Peak value for each item.
- DROP: The status of mbuf in the event of an overflow.
(1) Cluster top address

The starting address of the cluster memory.
(2) mbufs in use

The number of mbufs currently in use, and the total number of allocated mbufs. The following table shows details of the mbufs currently in use.

Item	Description
data	The number of mbufs in which communication data is stored.
packet headers	The number of mbufs in which a packet header is stored.
socket structures	The number of mbufs in which a socket structure is stored.
protocol control blocks	The number of mbufs in which a protocol control block is stored.
routing table entries	The number of mbufs in which routing table entries are stored.
IP reassembly-awaiting data	The number of mbufs in which IP reassembly-awaiting data is stored.
socket names and addresses	The number of mbufs in which a socket address is stored.
socket options	The number of mbufs in which a socket option is stored.
interface addresses	The number of mbufs in which the address of a network interface is stored.

(3) Kbytes allocated

The size of the cluster memory or mbufs currently in use, and the total size of the memory allocated to clusters. For details on the size of the cluster memory currently in use, see the following items:

Item	Description
mbuf	The size of the memory used as mbufs.
clusters	The size of the memory used as clusters.

(4) Mbuf/cluster allocation failures count

A count of the number of mbuf/cluster allocation failures due to a "cluster full" condition.
(5) Cluster request count

A count of the number of cluster requests issued after the number of clusters used reached the upper limit.

Any item with CURRENT, MAX, HIGH, and DROP each set equal to 0 is excluded from the displayed list.

## 3 TECHNICAL SUPPORT INFORMATION

(4) Routing information

The routing information displayed as shown below is concerning the routes registered in the CMU and ET.NET modules.

where:
(1) Destination

The network address of the destination. In the case of virtual network addresses, an asterisk ("*") is appended to the end of the address value.
(2) Gateway

The IP address of the gateway associated with the destination.
(3) Flags

Information indicating the status of the route. These flags are classified into the following three types:

Flag symbol	Description
U	Indicates that the route is currently in operation.
G	Indicates that the routing is to a gateway.
H	Indicates that the routing is to a host.

(4) Refcnt

A count of the number of users who are using the route.
(5) Metric

A hop count of the number of gateways that are present in the route to the destination.
(6) Interface

Always the string "EPORT" is displayed as this item.

## 3 TECHNICAL SUPPORT INFORMATION

## (5) IP statistical information

The IP statistical information displayed as shown below is a set of statistics concerning the IP protocol.

where:
(1) IP forwarding

Since forwarding is not supported, the string "host" is displayed as this item. If it was supported, an indication would be displayed which indicates whether it is operating as a forwarding gateway.
(2) default TTL

The default value of TTL (Time To Live) that determines the maximum hop count.
(3) total packets received

The total number of IP packets that were received from all existing network interfaces.
(4) errors in IP headers

The total number of IP packets that were discarded because of an error, such as a checksum or version error in the IP header.
(5) invalid IP address

The total number of IP packets that were discarded because the destination IP address was incorrect.
packets forwarded
The total number of IP packets that were forwarded (or routed to another interface).unknown (or unsupported) protocol
The total number of IP packets whose IP header contained a specification of an undefined upper protocol.
input packets discarded
The total number of IP packets that were received but discarded without being delivered to an upper protocol because of a buffer area shortage, or that the upper protocol refused to receive.
(9) in delivered

The total number of IP packets that were delivered to an upper protocol, such as TCP or UDP.
out requests
The total number of IP packets for which a send request was issued by an upper protocol.
output packets discarded
The total number of IP packets that were discarded because of a buffer shortage or some other cause.
packets discarded because no route
The total number of IP packets that were discarded because they could not be routed due to a routing information setting error or some other cause.
maximum seconds fragments awaiting reassembly
The maximum number of seconds during which a fragment awaiting reassembly may be placed in hold state.
(14) fragments received

The total number of fragment packets that were received.
packets successfully reassembled
The number of fragments that were reassembled successfully.
failures detected by the IP reassembly algorithm
The number of failures in fragment reassembly that were caused by a timeout, resource shortage, or some other cause.
(17) packets fragmented

The total number of transmission IP packets that were fragmented at transmission time because they exceeded the MTU size.
packets discard for they could not be fragmented
The total number of transmission IP packets that could not be fragmented because of a resource shortage or some other cause.
(19) fragments have been generated

The total number of fragment packets that were created by the fragmentation of transmission IP packets.
(20) routing entries were discarded

The number of routing entries that were discarded.

## 3 TECHNICAL SUPPORT INFORMATION

(6) ICMP statistical information

The ICMP statistical information displayed as shown below is a set of statistics concerning the ICMP protocol.

where:
(1) Messages

The total number of ICMP messages that were processed.
(2) Errors

The total number of ICMP error messages that were processed.
(3) Destination Unreachable

The total number of ICMP messages that could not be transmitted to the destination.
(4) Time Exceeded

The total number of ICMP messages that were discarded during routing because of a TTL (Time To Live) shortage.
(5) Parameter Problems

The total number of ICMP messages that reported on a parameter error.
(6) Source Quenches

The total number of ICMP messages that requested the control of transmissions because of a resource shortage on the receiving side.
(7) Redirects

The total number of ICMP messages that reported on the existence of a more suitable route to the destination.
(8) Echos

The total number of ICMP messages that were transmitted from the sending side of ping.
(9) Echo Replies

The total number of ICMP messages that were returned from the receiving side of ping.
(10) Timestamps

The total number of ICMP messages that were used as Timestamp requests.
(11) Timestamp Replies

The total number of ICMP messages that were used as responses to Timestamp requests.
(12) Address Masks

The total number of ICMP messages that were used as Address Mask Requests.
(13) Address Mask Replies

The total number of ICMP messages that were used as responses to Address Mask
Requests.

## 3 TECHNICAL SUPPORT INFORMATION

## (7) TCP statistical information

The TCP statistical information displayed as shown below is a set of statistics concerning the TCP protocol.

where:
(1) retransmitting algorithm

Name of the retransmission timeout (RTO) algorithm used.
(2) minimum value of retransmission timeout(milliseconds)

The minimum value of retransmission timeout period expressed in milliseconds.
(3) maximum value of retransmission timeout(milliseconds)

The maximum value of retransmission timeout period expressed in milliseconds.
(4) limit number of TCP connections

The maximum number of connections that can be established at a time.
(5) active opens

The number of connections that were established to satisfy the connection requests issued to the outside.
(6) passive opens

The number of connection requests that were received from the outside.attempt fails
The number of connection requests whose attempt to connect failed.
establish resets
The number of connection requests that were rejected during their processing.current establish
The total number of TCP connections currently active.segments received
The total number of segments (units of data each transmitted by TCP at a time) that were received.
segments sent
The total number of segments that were transmitted.
segments retransmit
The total number of segments that were retransmitted because a reception
acknowledgement was received from the destination.
segments received in error
The number of received segments that contained an error.
(14) segments send containing the RST flag

The number of received segments that contained a reset flag.

## 3 TECHNICAL SUPPORT INFORMATION

(8) UDP statistical information

The UDP statistical information displayed as shown below is a set of statistics concerning the UDP protocol.

where:
(1) packets received

The total number of UDP packets that were received.
(2) no application at the destination port

The number of UDP packets for which no receiving application (port number) could be found at the destination.
(3) packets received in error

The total number of UDP packets that could not be delivered to upper services because of an error or some other cause.
(4) packets sent

The total number of UDP packets that were transmitted.
(9) Cumulative information

The cumulative information displayed as shown below is a variety of counts maintained in the existing interface modules.

<Details of major cumulative info>
The following is a description of the log numbers 001 through 129 displayed as cumulative information. All log numbers other than listed are used as internal information for maintenance purposes.

- Log number 001: Receiving frame (success)

The number of frames that were received normally.

- Log number 002: Receiving frame (fail)

The number of frames that caused an error during reception.

- Log number 003: The number of frame sending to LAN

The number of frames that were sent out to the communication line.

- Log number 004: Total byte of the sending frame to LAN

The total number of bytes of the frames that were sent out to the communication line.

- Log number 005: The number of frame received from LAN

The number of frames that were received from the communication line. This number includes the frames that were received normally or abnormally.

- Log number 006: Total byte of the receiving frame to LAN

The total number of bytes of the frames that were received from the communication line.

- Log number 007: (LSI) Receiving data of unusual size

The number of frames whose frame length was abnormal.

- Log number 008:

CMU: (LSI) Bubble errors
Unused
ET.NET: (LSI) The number of times which failed in sending since 3.2 msec was exceeded The number of transmissions that failed due to a transmission delay (i.e., those transmissions that could not be started within 3.2 milliseconds or more after the issuance of the send request).

- Log number 009:

CMU: (LSI) Collision errors
The number of collision errors detected.
ET.NET: (LSI) Sending errors
The number of transmissions aborted.

- Log number 010: (LSI) Missed packet errors

The number of packets that were lost during operation because the communication LSI's internal buffer was full.

- Log number 011:

CMU: (LSI) Memory errors
The number of errors detected in accessing the communication LSI device's internal memory.
ET.NET: (LSI) Receiving status FIFO buffer overrun The number of reception status FIFO buffer overruns detected in the communication LSI device at reception time.

- Log number 012:(LSI) Late collision

The number of late collisions (i.e., collisions detected during the transmission of the 64th or subsequent byte of data after the preamble) that occurred during transmission.

- Log number 013:

CMU: (LSI) Sent buffer errors The number of times the communication buffer became full.
ET.NET: (LSI) sending data FIFO buffer undershirt run
The number of send-data FIFO buffer underruns detected in the communication LSI device at transmission time.

- Log number 014: (LSI) Undershirt flow errors

The number of send-buffer underflow errors that occurred during transmission.

- Log number 015: (LSI) Career losses

The number of carrier losses that occurred due to a disconnected cable, a power-off condition of the hub, or some other cause during transmission.

- Log number 016: (LSI) Retry errors

The number of retry errors (i.e., attempts to do more retries than permitted) that occurred during transmission.

- Log number 017: (LSI) Framing errors

The number of framing errors that occurred during reception.

- Log number 018: (LSI) Received overflow

The number of receive-buffer overflows that occurred during reception.

- Log number 019: (LSI) CRC errors

The number of frame CRC errors that occurred during reception.

- Log number 020:

CMU: (LSI) Buffer errors
The number of times the receive buffer became full.
ET.NET: (LSI) Receiving data FIFO buffer overrun
The number of receive-data FIFO buffer overruns detected in the communication LSI device at reception time.

- Log number 021: (LSI) Collision errors between sending (two or more)

The number of times more than one collision was detected during transmission.

- Log number 022: (LSI) Collision error between sending (once)

The number of times a single collision was detected during transmission.

- Log number 023: (LSI) Delay between sending

The number of delays that occurred during transmission, where each transmission was terminated normally.

- Log number 024: Frame-send-timeout

The number of frame-send-timeouts that occurred.

- Log number 129: Adapter state (top 2 bytes), LINK, 10M/100Mbps, Full-duplex / halfduplex state (bottom 2 bytes)
Data communication speed and full-duplex/half-duplex state of the CMU/ET.NET module used.
Read this information according to the following table:

Connection type	Displayed value (*)		
	Hexadecimal	Decimal	
10 Mbps	Half-duplex	00000001	1
	Full-duplex	00000005	5
100 Mbps	Half-duplex	00000003	3
	Full-duplex	00000007	7

${ }^{*}$ ) If a connection is not established over the communication line, the displayed value will be 0 (fixed).

## TECHNICAL SUPPORT INFORMATION

(10) ARP table information

The ARP table information displayed as shown below is the contents of the translation table that is used by the ARP (Address Resolution Protocol) for translation of IP addresses to physical addresses.

where:

- ARP information
(1) uno

A value of 1 is always displayed as this item.
(2) kind

The string "EPORT" is always displayed as this item.

- Interface Information

ARP entries that are registered.
(1) Host

The host name associated with the IP address displayed.
The host names displayed under this heading are those which are listed in the "hosts" file in the Tool currently in operation. If no host names are registered in that file, a question mark ("??") is displayed instead.
(2) IP Address

The IP address of the destination registered in the ARP table.
(3) Physical Address

The physical address(es) of the destination(s) registered in the ARP table. If an ARP entry is found invalid, the string "(incomplete)" is displayed instead.
(4) State

The current state(s) of the ARP entry (entries). The possible states are as follows:

State name displayed	Meaning
permanent	Fixed entry
published	Proxy ARP entry

## 3 TECHNICAL SUPPORT INFORMATION

### 3.20 Network Maintenance Commands

Command	Function	CMU	ET.NET	NCP-F	LANCP
svarp	Displays or modifies the address translation table.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
svnetstat	Displays the network status.	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
svfrstat	Displays the ring map, the station configuration, and operation information.	nu	nu	$\checkmark$	nu
svfrtest	Instructs configuration modification for the specified machine on the ring, or performs a loopback test.	nu	nu	$\checkmark$	nu
svnetlog	Displays the cumulative information.	$\checkmark$	$\checkmark$	nu	$\checkmark$

$\checkmark$ : Can be used; nu: Cannot be used.

### 3.20.1 Usage

To use network management commands, specify the following storage location and enter each command in the general command form shown below.
<Storage location>
C:\HitachilS10V\S10BASE\bin
The above pathname assumes that the S10V BASE SYSTEM is installed in the folder identified by the pathname "C:\HitachilS10V\S10BASE".
$<$ General command form>
command_name target_ctlr interface [arg]

Where target_ctlr is the host name or internet address of an S10V controller in need of maintenance, and interface is the unit number of an interface in need of maintenance. The unit number here may be the unit number of any network interface installed in the S10V controller specified by target_ctlr. (In the case of a CMU or ET.NET [model LQE720] module used by Ethernet connection, their unit number is always 1.)
Any interface used by the S10V controller for communication with the PC can be specified in target_ctlr. When using svfrtest, however, be sure to specify the interface you are not maintaining. To work on interface 1 in the example shown below, be sure to specify the internet address of interface 0 in target_ctlr and the unit number of interface 1 in the interface.


When specifying a host name in arg, make sure that the host name is already registered in the '/etc/hosts' in the PC. This assures that the PC translates the host name to an IP address before sending it to the S10V controller.
The values set in the network maintenance commands have no effect when the system is started again.

## svarp

$<$ NAME $>$
svarp -- display or modify ARP information (correspondence between internet addresses and MAC addresses).
<SYNOPSIS>
svarp target_ctlr interface host
svarp target_ctlr interface -a
svarp target_ctlr interface -d host
svarp target_ctlr interface -s host etaddr

## <DESCRIPTION>

The svarp command displays or modifies the table that translates Internet addresses used by the address resolution protocol (ARP) to MAC addresses.
target_ctlr: Specifies the host name or dot internet address of the target controller.
interface: Specifies the unit number of the target interface.
host: Specifies the host name or dot internet address of the host for which ARP information is to be displayed, registered, or deleted.
etaddr: Specifies the MAC address of the host to be registered.
No option: Displays the ARP information for the host specified in host.
-a: Displays all the ARP information for a specified interface of the controller in need of maintenance.
-d: Deletes the ARP information piece for the host specified in host. This option may be used only by the superuser. When the specified entry is not found, this command results in an error.
-s: Sets an MAC address for the host specified in host. Specify addr in the form of $\mathrm{xx}: \mathrm{xx}: \mathrm{xx}: \mathrm{xx}: \mathrm{xx}: \mathrm{xx}$, where each xx is a hexadecimal number. Only superusers can use this option. The entry registered by this option remains in effect until the entry is deleted with "arp -d". Up to 30 entries can be registered. An attempt to register more than this limit results in an error.

The values set in this command have no effect when the system is started again.
<Display format>
This command displays information on the ARP table in the following format when no options or the -a option is specified:
hostname (IPaddress) at MACaddress
Example:
romeo (192.0.1.1) at 0:0:87:a0:0:23

```
svnetstat
<NAME>
 svnetstat -- display the network status.
<SYNOPSIS>
 svnetstat target_ctlr interface [-a | -i | -m | -r | -s | -rs]
 svnetstat target_ctlr interface -fm sn
```


## <DESCRIPTION>

The svnetstat command displays the data structures related to various networks.
target_ctlr: Specifies the host name or dot internet address of the controller in need of maintenance. interface: Specifies the unit number of the interface in need of maintenance.
No options: Displays a list of all active sockets for each protocol. (*)
-a: In addition to the list displayed when no options are specified, displays status information for all sockets. (*)
-i: Displays status information for the network interfaces in operation.
$-m$ : Displays the statistics maintained by the memory management routine. The CMU and LANCP modules are collectively subjected to the same memory management process. For this reason, when you want to view statistical information on these nodules, specify the value 1 as the unit number.
-r: Displays route information.
-rs: Displays statistical information on routing.
-s: Displays statistical information on each protocol. (*)
-fm sn: Displays MIB information on the FDDI interface of the station identified by a specified station number. Make sure that the specified controller and interface in need of maintenance are connected to the ring to which the interface requesting FDDI MIB is connected.
(*) If you specify the unit number for the CMU and LANCP modules used in combination, the status information to be displayed is derived with regard to their actual unit numbers.
<Display format>
The following examples of displays show the display formats used by the svnetstat command, which vary depending on the type of option used.
(1) Socket status display format (when no option or the -a option is used)

Proto	Local Address	Foreign Address	(state)
tcp	158.212.107.198.1105	158.212 .109 .150 .1122	SYN_SENT

Proto: The name of the protocol used.
Local Address: The IP address and port number of the local host.
Foreign Address: The IP address and port number of the remote host.
(state): The status of the TCP protocol, displayed only when Proto is tcp.

Note: If the TCP protocol is used over more than 150 ports of modules other than the NCP-F, no status information will be displayed for the excess port(s) and UDP protocol. If the TCP protocol is used over more than 80 ports, no status information may be displayed for the UDP protocol.
(2) Routing information display format (when the -r option is used)

Destination	Gateway	Flags	Refcnt	Metric	Interface
158.212 .109	158.212 .102 .3	U	1	1	NCP-F6

Destination: The network address of the last destination network.
Gateway: The host name or IP address of the gateway.
Flags: The following status flags for gateway routing information for the destination:
U : Indicates that the route is in operation.
G: Indicates that it is a route to a gateway.
H : Indicates that it is a route to a host.
Refent: The number of interfaces currently using the routing information.
Metric: A hop count of the number of gateways through which data passes to reach the destination network or host.

Interface: The interface having the routing information, and its unit number.
(3) Interface information display format (when the -i option is used)

UNIT NO. 5:

```
slot = 5
kind = LANCP
MTU = 1500
IP address = 160.160.0.1
Netmask = 255.255.0.0
broadcast address = 160.160.255.255
output request count = 0
output count(success) = 532
output discard error count = 1
output error count = 1
deliver count = 0
input count = 622
input discard error count = 13
input error count = 10
```

slot: Slot number
kind: Interface type
MTU: Maximum number of transferable bytes
IP address: (Self-explanatory)
netmask: Net mask
broadcast address: (Self-explanatory)
output request count: A count of the number of accepted message transmission requests -- only for NCP-F.
output count (success): A count of the number of successful message transmissions -- not applicable to LANCP (10BASE-5).
output discard error count: A count of the number of message transmissions failed due to insufficient memory.
output error count: A count of the number of times hardware reported the number of message transmissions -- with LANCP (10BASE-5), this count includes the number of transmissions done successfully.
deliver count: A count of the number of times transmitted messages were passed to the user -only for NCP-F.
input count: A count of the number of times hardware reported message receptions.
input discard error count: A count of the number of message receptions failed due to insufficient memory.
input error count: A count of the number of times hardware reported the number of message transmissions.

## 3 TECHNICAL SUPPORT INFORMATION

(4) Statistical information display format (when the -s option is used)

```
ip:
 ip forwarding:host
 0 default TTL
 0 total packets received
 0 \text { errors in IP headers}
 0 invalid IP address
 0 \text { packets forwarded}
 0 unknown (or unsupported) protocol
 0 input packets discarded
 0 in delivered
 0 out requests (j)
```

0 output packets discarded .....  (k)
0 packets discarded because no route .....  (1)
0 maximum seconds fraguments awaiting reassembly .....  (m)
0 fragments received .....  (n)
0 packets successfully reassembled .....  (o)
0 failures detected by the IP reassembly algorithm ..... (p)
0 packets fragmented .....  (q)
0 packets discard for they could not be fragmented .....  (r)
0 fragments have been generated .....  (s)
0 routing entries were discarded .....  (t)
icmp:
0 messages recieved
0 error messages
0 destination unreachable
0 time exceeded
0 parameter problem
0 source quench
0 redirect
0 echo
0 echo reply
0 timestamp
0 timestamp reply
0 address mask request
0 address mask reply
0 messages sent
0 error massages
0 destination unreachable
0 time exceeded
0 parameter problem
0 source quench
0 redirect
0 echo
0 echo reply
0 timestamp
0 timestamp reply
0 address mask request
0 address mask reply
tcp:
retransmitting algorithm:
... (1)
0 minimum value of retransmission timeout (milliseconds) ... (2)
0 maximum value of retransmission timeout (milliseconds) ... (3)
0 limit number of TCP connections
... (4)
0 active opens
... (5)
0 passive opens
... (6)
0 attempt fails
... (7)
0 establish resets
... (8)
0 current establish
... (9)
0 segments received
... (10)
0 segments sent
... (11)
0 segments retransmit
... (12)
0 segments received in error
... (13)
0 segments sent containing the RST flag ... (14)
udp:
0 packets recieced ... (15)
0 no application at the destination port ... (16)
0 packets recieved in error ... (17)
0 packets sent ... (18)
<Description of IP information>
(a) Indicates whether it is operating as an IP gateway.
("gateway": Operating as a gateway; host: Not operating as a gateway)
(b) Default value of Time-to-Live for IP packets.
(c) Total number of received IP packets.
(d) The number of packets discarded due to IP header errors.
(e) The number of packets discarded due to destination address errors.
(f) The number of forwarded packets.
(g) The number of packets discarded due to unclear protocols or unsupported protocols.
(h) The number of packets received but discarded due to insufficient buffers and other causes.
(i) The number of packets received and passed to upper protocols.
(j) The number of packets for which transmission is requested by upper protocols -- this number does not include (f).
(k) The number of packets transmitted but discarded due to insufficient buffers and other causes.
(1) The number of packets discarded due to the lack of information on routing to the destination address.
(m) Maximum time during which the received fragment waits to be reconfigured (in seconds).
(n) The number of received fragments.
(o) The number of fragments successfully reconfigured.
(p) The number of detected unsuccessful reconfigurations.
(q) The number of packets successfully fragmented.
(r) The number of packets discarded due to unsuccessful fragmentation.
(s) The number of created fragments.
(t) The number of discarded routing entries.
<Description of ICMP information>
The accumulated values Except for (A), (B), (N), and (0), all counts are displayed only when they indicate packets were actually sent or received.
(A) The number of received ICMP messages -- this number includes (B).
(B) The number of ICMP messages resulting in reception errors.
(C) The number of received ICMP Destination Unreachable messages.
(D) The number of received ICMP Time Exceeded messages
(E) The number of received ICMP Parameter Problem messages.
(F) The number of received ICMP Source Quench messages.
(G) The number of received ICMP Redirect messages.
(H) The number of received ICMP Echo messages.
(I) The number of received ICMP Echo Reply messages.
(J) The number of received ICMP Timestamp messages.
(K) The number of received ICMP Timestamp Reply messages.
(L) The number of received ICMP Address Mask Request messages.
(M) The number of received ICMP Address Mask Reply messages.
(N) The number of transmitted ICMP messages -- this number includes ( O ).
(0) The number of ICMP messages resulting in transmission errors.
(P) The number of transmitted ICMP Destination Unreachable messages.
(Q) The number of transmitted ICMP Time Exceeded messages.
(R) The number of transmitted ICMP Parameter Problem messages.
(S) The number of transmitted ICMP Source Quench messages.
(T) The number of transmitted ICMP Redirect messages.
(U) The number of transmitted ICMP Echo messages.
(V) The number of transmitted ICMP Echo Reply messages.
(W) The number of transmitted ICMP Timestamp messages.
(X) The number of transmitted ICMP Timestamp Reply messages.
(Y) The number of transmitted ICMP Address Mask Request messages.
(Z) The number of transmitted ICMP Address Mask Reply messages.
<Description of TCP information>
(1) Retransmission algorithm type.
(2) Minimum retransmission time-out value (milliseconds).
(3) Maximum retransmission time-out value (milliseconds).
(4) Maximum number of TCP connections that can be opened concurrently.
(5) The number of active opens made.
(6) The number of passive opens made.
(7) The number of state transitions made from SYN-SENT or SYN-RCVD to CLOSE.
(8) The number of state transitions made from ESTABLISHED or CLOSE-WAIT to CLOSE.
(9) The number of TCP connections currently in the ESTABLISHED or CLOSE-WAIT state.
(10) The number of received packets.
(11) The number of transmitted packets.
(12) The number of retransmitted packets.
(13) The number of errors in received packets.
(14) The number of TCP packets transmitted with the RST flag turned on.
<Description of UDP information>
(15) The number or received packets.
(16) The number of received packets for which there were no applications at the destination.
(17) The number of received packets in error, except for (16).
(18) The number of transmitted packets.
(5) Memory statistical info display format (when the -m option is used)

Format used when an NCP-F interface is specified:


## SRBUFF Information

Top addr: Starting address of the buffer used.
Free addr: Starting address of the free buffer list.
Aline addr: Address of the buffer that extends beyond a 1Mth-byte boundary.
Total buff cnt: Total number of existing buffer cases.
Use cnt: The number of buffers in use.
Wait cnt: The number of waits for available buffers.
Peack cnt: Maximum number of usable buffers.
Overflow cnt: The number of buffer overflows detected.

## Page Information

Page: The number of pages under management.
Refcnt: The number of intra-page buffers in use.
Aline: 1Mth-byte boundary flag.

## Block Information

Page: Page number
Block: Block number
Use: Buffer-in-use flag.
Aline: 1Mth-byte boundary flag.
Addr: Intra-page buffer address.
CBIX: Address of the page management table.

## Format used when a built-in LANCE or LANCP interface is specified:

CURRENT:
XXX/XXX mbufs in use:
XXX mbufs allocated to data
XXX mbufs allocated to packet headres
XXX mbufs allocated to socket structures
XXX mbufs allocated to protocol control blocks
XXX mbufs allocated to routing table entries
XXX mbufs allocated to fragment reassemble queue headers
XXX mbufs allocated to socket names and addresses ... (h)
XXX mbufs allocated to socket options
XXX mbufs allocated to interface addresses ... (j)
XXX/XXX Kbytes allocated: (top address 0xXXXXXXXX)
XXX Kbytes allocated to mbufs ... (l)
XXX Kbytes allocated to clusters
XXX requests for memory denied
XXX overflows
MAX:
XXX/XXX mbufs in use:
XXX mbufs allocated to data
XXX mbufs allocated to packet headres
XXX mbufs allocated to socket structures
XXX mbufs allocated to protocol control blocks
XXX mbufs allocated to routing table entries
XXX mbufs allocated to fragment reassemble queue headers
XXX mbufs allocated to socket names and addresses
XXX mbufs allocated to socket options
XXX mbufs allocated to interface addresses
XXX/XXX Kbytes allocated:
XXX Kbytes allocated to mbufs
XXX Kbytes allocated to clusters

HIGH:
XXX mbufs in use:
XXX mbufs allocated to data
XXX mbufs allocated to packet headres
XXX mbufs allocated to socket structures
XXX mbufs allocated to protocol control blocks
XXX mbufs allocated to routing table entries
XXX mbufs allocated to fragment reassemble queue headers
XXX mbufs allocated to socket names and addresses
XXX mbufs allocated to socket options
XXX mbufs allocated to interface addresses
XXX Kbytes allocated:
XXX Kbytes allocated to mbufs
XXX Kbytes allocated to clusters

```
DROP:
XXX/XXX mbufs in use:
 XXX mbufs allocated to data
 XXX mbufs allocated to packet headres
 XXX mbufs allocated to socket structures
 XXX mbufs allocated to protocol control blocks
 XXX mbufs allocated to routing table entries
 XXX mbufs allocated to fragment reassemble queue headers
 XXX mbufs allocated to socket names and addresses
 XXX mbufs allocated to socket options
 XXX mbufs allocated to interface addresses
XXX/XXX Kbytes allocated:
 XXX Kbytes allocated to mbufs
 XXX Kbytes allocated to clusters
XXX requests for memory denied
XX overflows
```

CURRENT: The current state of mbufs in use.
MAX: The status of mbufs at their peak usage.
HIGH: Peak values of listed items.
DROP: The status of mbufs on the occurrence of an overflow -- this item is not displayed when no overflow was detected.
(a) The number of mbufs in use/total number of mbufs.
(b) The number of mbufs containing communication data.
(c) The number of mbufs containing packet headers.
(d) The number of mbufs containing socket tables.
(e) The number of mbufs containing protocol control tables.
(f) The number of mbufs containing routing table entries.
(g) The number of mbufs containing data waiting to be IP-reassembled.
(h) The number of mbufs containing socket addresses.
(i) The number of mbufs containing socket options.
(j) The number of mbufs containing network interface addresses.
(k) Size of cluster memory currently in use/total size of memory allocated to mbufs or clusters.
(1) Size of memory used as mbufs.
(m) Size of memory used as clusters.
(n) The number of unsuccessful allocations of mbufs or clusters due to full clusters.
(o) The number of requests for clusters that were made after the maximum usable number of clusters was reached.

Of the above items, (b) through (j), (1), and (m) are not displayed when their value is 0 .

## 3 TECHNICAL SUPPORT INFORMATION

(6) Routing statistical info display format (when the -rs option is used)
-- IP Routing Statistics --

IP Addr (uno)	Ipkts	Ierrs D_uno	Routing	Opkts	Oerrs
*160.10.0.10 (3)	50	105	20	10	1
		6	20	10	0
170.10.0.20(5)	25	53	20	10	0
		4	0	0	0
170.20.0.20(6)	20	03	20	10	0
		4	0	0	0
160.20.0.160 (4)	0	05	0	0	0
		6	0	0	0

IP Addr: IP address of the NCP-F interface that reported packet reception to the routing feature.
(An interface currently not performing routing is displayed with its IP address prefixed with an asterisk ["*"].)
uno: Unit number of the NCP-F interface indicated by IP Addr.
Ipkts: The number of packets stored in the routing reception buffer by the NCP-F interface indicated by IP Addr -- this number does not include Ierrs.
Ierrs: The number of packets that were discarded by the NCP-F interface indicated by IP Addr, due to routing reception buffer overflows.
D_uno: Unit number of the NCP-F interface to which the routing feature forwarded packets.
Routing: The number of times the NCP-F interface indicated by IP Addr instructed packet forwarding to the destination NCP-F interface identified by D_uno.
Opkts: The number of times the routing feature sent a packet to the destination NCP-F interface -- this number includes Oerrs.
Oerrs: The number of unsuccessful transmissions to the destination NCP-F interface.

## svnetlog

```
<NAME>
 svnetlog -- display count information.
```


## <SYNOPSIS>

svnetlog target_ctlr interface

## <DESCRIPTION>

The svnetlog command displays count information for a specified interface.
target_ctlr: Specifies the host name or Internet address in dot-separated format of a controller in need of maintenance.
interface: Specifies the unit number of an interface in need of maintenance.
<Display format>
The following example of a display shows the display format used by the svnetlog command. For details on count information displays, see the information provided under "(9) Addition information" of "3.19.2 Network information details."

```
UNIT NO. = 1: LANCP LOGOUT:
```

```
LOGOUT:001
LOGOUT:003 39
LOGOUT:004 7154
LOGOUT: 005 499
LOGOUT:006 57030
LOGOUT: 007 0
LOGOUT:008 0
LOGOUT: 009 0
LOGOUT:010 0
LOGOUT:011 0
LOGOUT:012 0
LOGOUT:013 0
LOGOUT: 014 0
LOGOUT: 255 0
LOGOUT: 256 0

THIS PAGE INTENTIONALLY LEFT BLANK.

\section*{4 ERROR LOG INFORMATION}

\subsection*{4.1 Displaying Error Log Information}

To display error log information on screen, start the S10V Base System by choosing [Start] [Programs] - [Hitachi S10V] - [S10V BASE SYSTEM] on the Windows \({ }^{\circledR}\) personal computer connected with the LPU unit. Then, the [S10BASE] window appears. In this window, click the Error Log button. The [Error log information] window then appears, which enables you to view the information on errors that occurred in individual modules.
To view error information for the CMU or ET.NET (model LQE720) module, click the Error Log Detail button in the [Error log information] window. Then, the [Error Log Detail] window appears, which enables you to view the error log detail information for the CMU or ET.NET (model LQE720) module.
For details of the [Error log information] window, see the information provided under "4.2 Error Log Information and Required Actions." For details of the [Error Log Detail] window, see the information provided under "4.4 RPDP Error Log Display Guide."

For information on how to operate a variety of available tools, refer to the description under " 6 TOOLS" in the "USER'S MANUAL BASIC MODULES (manual number SVE-1-100)."

\subsection*{4.2 Error Log Information and Required Actions}

\subsection*{4.2.1 LPU (model LQP510) error log info and required actions}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x1101 & Processor register compare-check error & \multirow[t]{8}{*}{At startup, the self-diagnosis capability detected an error. Reset the LPU module and then check if the same error recurs. If so, replace the LPU module.} \\
\hline 0x1102 & Processor mathematical/logical operation check error & \\
\hline 0x1103 & RAM compare-check error & \\
\hline 0x1105 & ROM compare-check error & \\
\hline 0x1106 & ROM checksum error & \\
\hline 0x1108 & Ladder program checksum error & \\
\hline 0x1109 & Timer diagnosis error & \\
\hline 0x110A & Ladder processor diagnosis error & \\
\hline 0x110B & Rotary switch setting range violation & A setting of the \(\mathrm{T} / \mathrm{M}\) or operation setting switch is outside the permitted range. Refer to the information provided under " 3 NAMES AND FUNCTIONS OF EACH PART" in the "BASIC MODULES (manual number SVE-1-100)," set the switch again, and then reset the LPU module. \\
\hline 0x1201 & RAM parity error & \multirow[t]{5}{*}{Reset the LPU module. Then, if the same error recurs, replace the module.} \\
\hline 0x1202 & RAM parity error (detected by the ladder processor) & \\
\hline 0x1203 & Ladder illegal instruction detected & \\
\hline 0x1204 & Ladder illegal instruction detected (by the ladder processor) & \\
\hline 0x1205 & Watchdog timer timeout & \\
\hline 0x1206 & Ladder program watchdog timer timeout & The processing time required by a ladder program exceeded the set time value of the watchdog timer. Set a larger value for the set time value of the watchdog timer, or reduce the required processing time of the ladder program. \\
\hline 0x1207 & Stack overflowed & Reset the LPU module. Then, if the same error recurs, replace the module. \\
\hline 0x1208 & Ladder program nesting overflowed & The depth of a nesting in a ladder program is five levels or more. Reduce the nesting depth to four levels or less. \\
\hline 0x1209 & Protection error & An attempt to write data to a protected area in a ladder program was detected. Review the ladder program. For information on the protected area, refer to the information provided under " 8 OPERATION" in the "BASIC MODULES (manual number SVE-1-100)." \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}
\begin{tabular}{|c|c|c|c|}
\hline Error code & & Meaning & Required action \\
\hline 0x120A & \multicolumn{2}{|l|}{User arithmetic function registration address error} & A registration address for a user arithmetic function is set outside SEQ-RAM. Review the setting. \\
\hline 0x120B & \multicolumn{2}{|l|}{RAM parity error (detected when an access was made to it from the system bus)} & Reset the LPU module. Then, if the same error recurs, replace the module. \\
\hline 0x120C & \multicolumn{2}{|l|}{Arithmetic function address error} & An attempt to access a long word was made from a word boundary during execution of an arithmetic function. Review the user ladder program so that it will access a long word from a long-word boundary. \\
\hline 0x13XX & \multicolumn{2}{|l|}{\begin{tabular}{l}
Undefined exception detected. \\
(Except for the below, the "XX" in this error code is a vector number in hexadecimal in the range 00 to FF .) \\
\(X X=04\) or 06: Illegal instruction detected. \\
\(\mathrm{XX}=09\) or 0A: Address error.
\end{tabular}} & Reset the LPU module. Then, if the same error recurs, replace the module. \\
\hline \multirow[t]{9}{*}{0x14XX} & \multicolumn{2}{|l|}{Optional-module memory parity error. (As shown below, the " XX " in this error code is a hexadecimal number in the range 80 to FF and identifies the optional module.)} & A parity error occurred during accessing the optional module's internal RAM from the LPU module. Reset the LPU module. Then, if the same error recurs, replace the optional module. \\
\hline & XX & \multicolumn{2}{|r|}{Identifies the optional module.} \\
\hline & 80/81 & \multicolumn{2}{|l|}{Inter-CPU link module (80: main module; 81: submodule)} \\
\hline & 82/83 & \multicolumn{2}{|l|}{OD.RING/SD.LINK (82: main module; 83: submodule)} \\
\hline & 92/93 & \multicolumn{2}{|l|}{J.NET/J.NET-INT/IR.LINK (92: main module, 93: submodule)} \\
\hline & A0 to A3 & \multicolumn{2}{|l|}{RS-232C/RS-422 (A0: channel 0; A1: channel 1; A2: channel 2; A3: channel 3)} \\
\hline & D2/D3 & \multicolumn{2}{|l|}{ET.NET/SV.LINK (D2: main module, D3: submodule)} \\
\hline & E2/E3 & \multicolumn{2}{|l|}{FL.NET/EQ.LINK (E2: main module, E3: submodule)} \\
\hline & F0 to F3 & \multicolumn{2}{|l|}{D.NET(F0: channel 0, F1: channel 1, F2: channel 2, F3:channel 3)} \\
\hline 0x15XX & \multicolumn{2}{|l|}{Optional-module memory protection error. (The "XX" in this error code has the same meaning as the " XX " in the error code "0x14XX" above.)} & A memory protection error occurred during accessing the optional module's internal RAM from the LPU module. Reset the LPU module. Then, if the same error recurs, replace the optional module. \\
\hline 0x1601 & \multicolumn{2}{|l|}{CMU response monitoring timeout} & No response was received from the CMU module. Reset the LPU module. Then, if the same error recurs, the CMU module may be in a failure condition. Replace the module. \\
\hline 0x1602 & \multicolumn{2}{|l|}{CMU down} & \begin{tabular}{l}
The CMU module is down. Reset the LPU module. \\
Then, if the same error recurs, the CMU module may be in a failure condition. Replace the module.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Error code & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Required action } \\
\hline \(0 \times 2301\) & LPU battery low & \begin{tabular}{l}
The backup battery is low. Replace the battery. For \\
details, refer to the information provided under "10.2 \\
Replacing the Backup Battery" in the "BASIC MODULES \\
(manual number SVE-1-100)."
\end{tabular} \\
\hline \(0 \times 2401\) & Optional-module startup check error & \begin{tabular}{l}
One of the mounted optional modules is not up and running. \\
View the error log on the optional module and remove the \\
cause of the error.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.2.2 CMU (model LQP520) error log info and required actions}

\section*{CMU-related errors are reported by presenting error messages in one of the formats shown under}

\section*{"4.3 CMU Error Message Formats."}
(1/4)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Error code & Error message & Brief description & Error classification & Error location & Abend type & Required action \\
\hline 1 & EC=03620000 & Program error (Invalid Data Access) & Data access error & Software & TASK & TASK ABORT & Program correction \\
\hline 2 & EC=03660000 & Program error (Data Access Protection) & Data access protection error & Software & TASK & TASK ABORT & Program correction \\
\hline 3 & EC=03600000 & Program error (Data Page Fault) & Data access page fault & Software & TASK & TASK ABORT & Program correction \\
\hline 4 & EC=03420000 & Program error (Invalid Inst. Access) & Instruction access error & Software & TASK & TASK ABORT & Program correction \\
\hline 5 & EC=03460000 & Program error (Inst. Access Protection) & Instruction access protection error & Software & TASK & TASK ABORT & Program correction \\
\hline 6 & EC=03400000 & Program error (Instruction Page Fault) & Instruction access page fault & Software & TASK & TASK ABORT & Program correction \\
\hline 7 & EC=03030000 & Program error (Inst. Alignment Error) & Instruction alignment error & Software & TASK & TASK ABORT & Program correction \\
\hline 8 & EC=03080000 & Program error (Privileged Instruction) & Privileged-instruction violation & Software & TASK & TASK ABORT & Program correction \\
\hline 9 & EC=03040000 & Program error (Illegal Instruction) & Illegal instruction error & Software & TASK & TASK ABORT & Program correction \\
\hline 10 & EC=03390000 & Program error (FP Program Error) & Floating-point arithmetic error & Software & TASK & TASK ABORT & Program correction \\
\hline 11 & EC=03470000 & Program error (Data Alignment Error) & Data alignment error & Software & TASK & TASK ABORT & Program correction \\
\hline 12 & EC=05130000 & Macro parameter error & Undefined macro issued & Software & TASK & TASK ABORT & Program correction \\
\hline 13 & EC=05110000 & Macro parameter error & Macro parameter abnormal & Software & TASK & TASK ABORT & Program correction \\
\hline 14 & EC=07xxxxxx & I/O error (error detail message) & Network I/O error & Hardware & I/O & - & For details, see
4.2 .15 and 4.2.16. \\
\hline 15 & EC=05C70000 & WDT timeout error & Watchdog timer timeout & Hardware & TASK & - & Program correction \\
\hline 16 & EC=03B70000 & Module error (Bus Target Abort) & Bus target abort & Hardware & I/O & - & Hardware replacement or program correction (*) \\
\hline 17 & EC=05000000 & Module error (Invalid Interrupt) & Invalid interrupt & Hardware & CMU & - & Hardware replacement \\
\hline 18 & EC=05000001 & Module error (Undefined Invalid Interrupt) & Undefined invalid interrupt & Hardware & CMU & - & Hardware replacement \\
\hline 19 & EC=05000002 & Module error (INTEVT Invalid Interrupt) & INTEVT invalid interrupt & Hardware & CMU & - & Hardware replacement \\
\hline 20 & EC=0500F001 & Module error (HERST Invalid Interrupt) & Serious-error invalid interrupt & Hardware & CMU & - & Hardware replacement \\
\hline 21 & EC=0500F002 & Module error (HERST2 Invalid Interrupt) & Serious-error invalid interrupt 2 & Hardware & CMU & - & Hardware replacement \\
\hline 22 & EC=0500F003 & Module error (BUERRSTAT Invalid Interrupt) & Bus serious-error interrupt status invalid & Hardware & CMU & - & Hardware replacement \\
\hline 23 & EC=0500F006 & Module error (NHPMCLG Invalid Interrupt) & Memory serious-error interrupt status invalid & Hardware & CMU & - & Hardware replacement \\
\hline 24 & EC=0500F007 & Module error (ECC 2bit Master Invalid Interrupt) & Memory ECC-detected 2-bit serious error status invalid & Hardware & CMU & - & Hardware replacement \\
\hline 25 & EC=0500F008 & Module error (RERRMST Invalid Interrupt) & RERR interrupt status invalid & Hardware & CMU & - & Hardware replacement \\
\hline 26 & EC=0500C001 & Module error (NINTR Invalid Interrupt) & NINT status invalid & Hardware & CMU & - & Hardware replacement \\
\hline 27 & EC=0500B001 & Module error (PUINTR Invalid Interrupt) & PUINT status invalid & Hardware & CMU & - & Hardware replacement \\
\hline 28 & EC=05005001 & Module error (RINTR Invalid Interrupt) & RINT status invalid & Hardware & CMU & - & Hardware replacement \\
\hline 29 & EC=05003001 & Module error (LV3 INTST Invalid Interrupt) & Level-3 interrupt status invalid & Hardware & CMU & - & Hardware replacement \\
\hline 30 & EC=05003002 & Module error (RQI6 INF Invalid Interrupt) & RQI6 status invalid & Hardware & CMU & - & Hardware replacement \\
\hline 31 & EC=05001001 & Module error (RQI3 INT Invalid Interrupt) & RQI3 status invalid & Hardware & CMU & - & Hardware replacement \\
\hline 32 & EC=05001002 & Module error (RQI3 Link Invalid Interrupt) & RQI3 link status invalid & Hardware & CMU & - & Hardware replacement \\
\hline 33 & EC=05001003 & Module error (RQ13 Module Invalid Interrupt) & RQI3 module status invalid & Hardware & CMU & - & Hardware replacement \\
\hline 34 & EC=0D010000 & Module error (Memory Alarm) & Memory 1-bit error (solid) & Hardware & CMU & - & Hardware replacement \\
\hline
\end{tabular}
\({ }^{(*)}\) This type of error may also occur when the target module is under initialization or in a stop state. In these cases, hardware replacement is unnecessary.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Error code & Error message & Brief description & Error classification & Error location & Abend type & Required action \\
\hline 35 & EC=0D320000 & Module error (Memory Error) & Memory error & Hardware & CMU, I/O & - & Hardware replacement \\
\hline 36 & EC=0D330000 & Module error (Hardware WDT timeout) & Hardware WDT timeout & Hardware & CMU, I/O & - & Hardware replacement \\
\hline 37 & EC=0D340000 & Module error (Software WDT Timeout) & Software WDT timeout & Hardware & CMU, I/O & - & Hardware replacement or program correction \\
\hline 38 & EC=0D350000 & Module error (RAM Sum Check Error) & RAM checksum error & Hardware & CMU, I/O & - & Hardware replacement or program correction \\
\hline 39 & EC=0D360000 & Module error (ROM Sum Check Error) & ROM checksum error & Hardware & CMU, I/O & - & Hardware replacement \\
\hline 40 & EC=0D370000 & Module error (Clock Stop Error) & Clock stop error & Hardware & CMU, I/O & - & Hardware replacement \\
\hline 41 & EC=0D380000 & Module error (OS Clear Error) & OS clear error & Hardware & CMU, I/O & - & Program loading \\
\hline 42 & EC=0D800000 & Module error (TOD Error) & Backup clock error & Hardware & CMU & - & Hardware replacement \\
\hline 43 & EC=05A00000 & Kernel warning & Kernel warning & Hardware & - & - & - \\
\hline 44 & EC=05D00000 & Kernel information & Kernel information & Hardware & - & - & - \\
\hline 45 & EC=0D810000 & System down (BPU Error) & BPU error & Hardware & CMU & CMU STOP & Hardware replacement \\
\hline 46 & EC=03820000 & System down (Memory Error) & Memory error & Hardware & CMU & CMU STOP & Hardware replacement \\
\hline 47 & EC=038A0000 & System down (Memory Access Error) & Memory access error & Hardware & CMU & CMU STOP & Hardware replacement \\
\hline 48 & EC=038B0000 & System down (Internal Bus Parity) & Internal-bus parity error & Hardware & CMU & CMU STOP & Hardware replacement \\
\hline 49 & EC=038C0000 & System down (System Bus Parity) & System-bus parity error & Hardware & CMU & CMU STOP & Hardware replacement \\
\hline 50 & EC=038F0000 & System down (Undefined Machine Check) & Undefined-machine check error & Hardware & CMU & CMU STOP & Hardware replacement \\
\hline 51 & EC=07394720 & System down (Invalid Interrupt Panic) & Invalid interrupt (10 times successively) & Hardware & DPIO IFX & CMU STOP & DPIO IFX module replacement \\
\hline 52 & EC=03620000 & System down (Invalid Data Access) & Data access error & Software & CPMS & CMU STOP & Program correction \\
\hline 53 & EC=03660000 & System down (Data Access Protection) & Data access protection error & Software & CPMS & CMU STOP & Program correction \\
\hline 54 & EC=03600000 & System down (Data Page Fault) & Data access page fault & Software & CPMS & CMU STOP & Program correction \\
\hline 55 & EC=03420000 & System down (Invalid Inst. Access) & Instruction access error & Software & CPMS & CMU STOP & Program correction \\
\hline 56 & EC=03460000 & System down (Inst. Access Protection) & Instruction access protection error & Software & CPMS & CMU STOP & Program correction \\
\hline 57 & EC=03400000 & System down (Instruction Page Fault) & Instruction access page fault & Software & CPMS & CMU STOP & Program correction \\
\hline 58 & EC=03030000 & System down (Inst. Alignment Error) & Instruction alignment error & Software & CPMS & CMU STOP & Program correction \\
\hline 59 & EC=03040000 & System down (Illegal Instruction) & Privileged instruction error & Software & CPMS & CMU STOP & Program correction \\
\hline 60 & EC=03380000 & System down (FP Unavailable) & Floating-point unavailability exception & Software & CPMS & CMU STOP & Program correction \\
\hline 61 & EC=03390000 & System down (FP System down) & Floating-point arithmetic error & Software & CPMS & CMU STOP & Program correction \\
\hline 62 & EC=03470000 & System down (Data Alignment Error) & Data alignment error & Software & CPMS & CMU STOP & Program correction \\
\hline 63 & EC=030F0000 & System down (Illegal Exception) & Illegal exception & Software & CPMS & CMU STOP & Program correction \\
\hline 64 & EC=05700000 & System down (System Error) & System down (System error) & Software & CPMS & CMU STOP & Program correction \\
\hline 65 & EC=05800000 & System down (Kernel Trap) & System down (Kernel trap) & Software & CPMS & CMU STOP & Program correction \\
\hline 66 & EC=03620000 & ULSUB down (Invalid Data Access) & Data access error & Software & ULSUB & CMU STOP & Program correction \\
\hline 67 & EC=03660000 & ULSUB down (Data Access Protection) & Data access protection error & Software & ULSUB & CMU STOP & Program correction \\
\hline 68 & EC=03600000 & ULSUB down (Data Page Fault) & Data access page fault & Software & ULSUB & CMU STOP & Program correction \\
\hline 69 & EC=03420000 & ULSUB down (Invalid Inst. Access) & Instruction access error & Software & ULSUB & CMU STOP & Program correction \\
\hline 70 & EC=03460000 & ULSUB down (Inst. Access Protection) & Instruction access protection error & Software & ULSUB & CMU STOP & Program correction \\
\hline 71 & EC=03400000 & ULSUB down (Instruction Page Fault) & Instruction access page fault & Software & ULSUB & CMU STOP & Program correction \\
\hline 72 & EC=03030000 & ULSUB down (Inst. Alignment Error) & Instruction alignment error & Software & ULSUB & CMU STOP & Program correction \\
\hline 73 & EC=03080000 & ULSUB down (Privileged Instruction) & Privileged-instruction violation & Software & ULSUB & CMU STOP & Program correction \\
\hline 74 & EC=03040000 & ULSUB down (Illegal Instruction) & Illegal instruction error & Software & ULSUB & CMU STOP & Program correction \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Error code & Error message & Brief description & Error classification & Error location & Abend type & Required action \\
\hline 75 & EC=03380000 & ULSUB down (FP Unavailable) & Floating-point unavailability exception & Software & ULSUB & CMU STOP & Program correction \\
\hline 76 & EC=03390000 & ULSUB down (FP System down) & Floating-point arithmetic error & Software & ULSUB & CMU STOP & Program correction \\
\hline 77 & EC=03470000 & ULSUB down (Data Alignment Error) & Data alignment error & Software & ULSUB & CMU STOP & Program correction \\
\hline 78 & EC=030F0000 & ULSUB down (Illegal Exception) & Illegal exception & Software & ULSUB & CMU STOP & Program correction \\
\hline 79 & EC=05140000 & System down (ULSUB Stop) & CPU stopped upon completion of the execution of a built-in subroutine & Software & ULSUB & CMU STOP & - \\
\hline 80 & EC=05F00000 & Program Error (ADT Error) & Memory access attempt detected & Software & Task & Log & Program correction \\
\hline 81 & EC=00000201 & Message frame error & Message frame error & Software & NXACP & - & - \\
\hline 82 & EC=00000401 & Buffer status & Buffer status report & Software & NXACP & - & - \\
\hline 83 & EC=00000501 & Socket error & Socket error & Software & NXACP & - & - \\
\hline 84 & EC=00000601 & Transfer memory address error & Transfer memory areas overlapping & Software & TASK & - & Program correction \\
\hline 85 & EC=08xxxxxx & Msoft log01 & Report from middleware & Software & Depending on middleware & - & - \\
\hline 86 & EC=08xxxxxx & Msoft log02 & Report from middleware & Software & Depending on middleware & - & - \\
\hline 87 & EC=08xxxxxx & Msoft log03 & Report from middleware & Software & Depending on middleware & - & - \\
\hline 88 & EC=08xxxxxx & Msoft \(\log 04\) & Report from middleware & Software & Depending on middleware & - & - \\
\hline 89 & EC=08xxxxxx & Msoft log05 & Report from middleware & Software & Depending on middleware & - & - \\
\hline 90 & EC=08xxxxxx & Msoft log06 & Report from middleware & Software & Depending on middleware & - & - \\
\hline 91 & EC=08xxxxxx & Msoft \(\log 07\) & Report from middleware & Software & Depending on middleware & - & - \\
\hline 92 & EC=08xxxxxx & Msoft log08 & Report from middleware & Software & Depending on middleware & - & - \\
\hline 93 & EC=08xxxxxx & Msoft log09 & Report from middleware & Software & Depending on middleware & - & - \\
\hline 94 & EC=08xxxxxx & Msoft \(\log 10\) & Report from middleware & Software & Depending on middleware & - & - \\
\hline 95 & EC=08xxxxxx & Msoft \(\log 11\) & Report from middleware & Software & Depending on middleware & - & - \\
\hline 96 & EC=08xxxxxx & Msoft \(\log 12\) & Report from middleware & Software & Depending on middleware & - & - \\
\hline 97 & EC=08xxxxxx & Msoft \(\log 13\) & Report from middleware & Software & Depending on middleware & - & - \\
\hline 98 & EC=08xxxxxx & Msoft \(\log 14\) & Report from middleware & Software & Depending on middleware & - & - \\
\hline 99 & EC=08xxxxxx & Msoft \(\log 15\) & Report from middleware & Software & Depending on middleware & - & - \\
\hline 100 & EC=08xxxxxx & Msoft \(\log 16\) & Report from middleware & Software & Depending on middleware & - & - \\
\hline 101 & EC=09xxxxxx & User \(\log 01\) & Report from application software & Software & Depending on middleware & - & - \\
\hline 102 & EC=09xxxxxx & User \(\log 02\) & Report from application software & Software & Depending on middleware & - & - \\
\hline 103 & EC=09xxxxxx & User \(\log 03\) & Report from application software & Software & Depending on middleware & - & - \\
\hline 104 & EC=09xxxxxx & User \(\log 04\) & Report from application software & Software & Depending on middleware & - & - \\
\hline 105 & EC=09xxxxxx & User \(\log 05\) & Report from application software & Software & Depending on middleware & - & - \\
\hline 106 & EC=09xxxxxx & User \(\log 06\) & Report from application software & Software & Depending on middleware & - & - \\
\hline 107 & EC=09xxxxxx & User \(\log 07\) & Report from application software & Software & Depending on middleware & - & - \\
\hline 108 & EC=09xxxxxx & User \(\log 08\) & Report from application software & Software & Depending on middleware & - & - \\
\hline 109 & EC=09xxxxxx & User \(\log 09\) & Report from application software & Software & Depending on middleware & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Error code & Error message & Brief description & Error classification & Error location & Abend type & Required action \\
\hline 110 & EC=09xxxxxx & User \(\log 10\) & Report from application software & Software & Depending on middleware & - & - \\
\hline 111 & EC=09xxxxxx & User log11 & Report from application software & Software & Depending on middleware & - & - \\
\hline 112 & EC=09xxxxxx & User \(\log 12\) & Report from application software & Software & Depending on middleware & - & - \\
\hline 113 & EC=09xxxxxx & User log13 & Report from application software & Software & Depending on middleware & - & - \\
\hline 114 & EC=09xxxxxx & User \(\log 14\) & Report from application software & Software & Depending on middleware & - & - \\
\hline 115 & EC=09xxxxxx & User \(\log 15\) & Report from application software & Software & Depending on middleware & - & - \\
\hline 116 & EC=09xxxxxx & User \(\log 16\) & Report from application software & Software & Depending on middleware & - & - \\
\hline
\end{tabular}

\subsection*{4.2.3 FL.NET (model LQE500/502) error log info and required actions}
(1/2)
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x0010 & Bus error & \multirow[t]{9}{*}{Reset the LPU module. Then, if the same error recurs, the FL.NET module may be in a failure condition. Replace the module.} \\
\hline 0x0011 & Address error & \\
\hline 0x0012 & Illegal instruction & \\
\hline 0x0013 & Division by zero & \\
\hline 0x0014 & Privileged-instruction violation & \\
\hline 0x0016 & Format error & \\
\hline 0x0017 & Spurious interrupt & \\
\hline 0x0018 & Unsupported exception & \\
\hline 0x0019 & Parity error & \\
\hline 0x0100 & Module no. setting error & The module no. setting switch is set incorrectly. Correct the module no. setting by referring to the information provided under "3.3 Setting the Module Number Selector Switch" in the "FL.NET (manual number SVE-1-101)." \\
\hline 0x0102 & ROM1 checksum error & \multirow[t]{3}{*}{Reset the LPU module. Then, if the same error recurs, the FL.NET module may be in a failure condition. Replace the module.} \\
\hline 0x0103 & RAM1 compare error & \\
\hline 0x0105 & RAM2 compare error & \\
\hline 0x010B & Non-matching parameter type detected (e.g., a parameter specified for use in an S10mini controller), or ROM3 checksum error & The module's link or other parameter may be incorrect (for example, although the module is mounted in the S 10 V controller, it may contain parameter values for an S10mini controller). Set the correct parameters. Then, if the problem is still not solved, the module may be in a failure condition. Replace the module. \\
\hline 0x0112 & Microprogram error & Reset the LPU module. Then, if the same error recurs, the FL.NET module may be in a failure condition. Replace the module. \\
\hline 0x0113 & IP address not defined yet & Define the IP address. \\
\hline 0x0114 & MAC address not defined yet & Reset the LPU module. Then, if the same error recurs, the FL.NET module may be in a failure condition. Replace the module. \\
\hline 0x0200 & Module not participating in the network & The FL.NET module is currently not a member of the network (or is performing the participation process). For information on how to solve this problem, refer to the information provided under "7 TROUBLESHOOTING" in the "FL.NET (manual number SVE-1101)." \\
\hline 0x0201 & Common memory settings duplicated & \begin{tabular}{l}
The local node's common memory settings are duplicated with a remote node's. Compare the common memory settings of the two nodes and correct the duplicated settings. If it becomes necessary to correct the local node's settings, use the FL.NET For Windows® \({ }^{\circledR}\) setup tool. \\
(If this type of error occurs, the common memory settings [area address and word count] of the node in which the error is detected are automatically set to 0 .)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Error code & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Required action } \\
\hline \(0 \times 0202\) & Node number duplicated & \begin{tabular}{l}
The set node number of the FL.NET module is duplicated with \\
another node's in the same network. Check the node number of the \\
other node and correct the duplicated node number. \\
(If this type of error occurs, the node for which the duplicated node \\
number is set is blocked from participating in the network, as is \\
prescribed in the FA link protocol's rules. After correcting the \\
error, you can make the node participate in the network by turning \\
the power to the module off and back on again, or by issuing a \\
participation request from the FL.NET For Windows® setup tool.)
\end{tabular} \\
\hline \(0 \times 0203\) & FL.NET module setting error & \begin{tabular}{l}
A setting error is detected in the FL.NET module. Check the \\
module's internal settings by using the FL.NET setup tool (FL.NET \\
system) and, if any error is found, correct it. Then, if the same
\end{tabular} \\
error recurs, the FL.NET module may be in a failure condition. \\
Replace the module.
\end{tabular}

\subsection*{4.2.4 OD.RING (model LQE510/515) error log info and required actions}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x0010 & Bus error & \multirow[t]{11}{*}{Reset the LPU module. Then, if the same error recurs, the OD.RING module may be in a failure condition. Replace the module.} \\
\hline 0x0011 & Address error & \\
\hline 0x0012 & Illegal instruction & \\
\hline 0x0013 & Division by zero & \\
\hline 0x0014 & Privileged-instruction violation & \\
\hline 0x0015 & WDT error & \\
\hline 0x0016 & Format error & \\
\hline 0x0017 & Spurious interrupt & \\
\hline 0x0018 & Unsupported exception & \\
\hline 0x0019 & Parity error & \\
\hline 0x001A & GR warning & \\
\hline 0x0100 & Module no. setting error & The module no. setting switch is set incorrectly. Correct the module no. setting by referring to the information provided under " 2 NAMES AND FUNCTIONS OF EACH PART" in the "OD.RING (manual number SVE-1-102)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x0101 & CPL switch setting error & The CPL no. setting switch is set incorrectly. Correct the CPL no. setting by referring to the information provided under " 2 NAMES AND FUNCTIONS OF EACH PART" and "4.2 Setting Switches" in the "OD.RING (manual number SVE-1-102)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x0102 & ROM1 checksum error & \multirow[t]{6}{*}{Reset the LPU module. Then, if the same error recurs, the OD.RING module may be in a failure condition. Replace the module.} \\
\hline 0x0103 & RAM1 compare error & \\
\hline 0x0105 & RAM2 compare error & \\
\hline 0x010B & ROM3 checksum error & \\
\hline 0x010C & ROM3 clear error, program-related & \\
\hline 0x010D & ROM3 write error, program-related & \\
\hline 0x010E & ROM3 clear error, parameter-related & \multirow[t]{2}{*}{Reset the LPU module and set all necessary parameters again. Then, if the same error recurs, the OD.RING module may be in a failure condition. Replace the module.} \\
\hline 0x010F & ROM3 write error, parameterrelated & \\
\hline 0x0110 & Too many ROM rewrites attempted & Replace the module. \\
\hline 0x0111 & CPL no. duplicated & A duplicated CPL no. is detected. Correct the CPL no. setting by referring to the information provided under "2 NAMES AND FUNCTIONS OF EACH PART" and "4.2 Setting Switches" in the "OD.RING (manual number SVE-1-102)." \\
\hline 0x0112 & Non-matching parameter type detected (e.g., a parameter specified for use in an S10mini controller), or parameter error (incorrect SUM value) & A parameter previously set for use in an S10mini controller, or a parameter error is detected. Correct the parameters by referring to the information provided under "4.6 Commands" in the "OD.RING (manual number SVE-1-102)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline
\end{tabular}

\subsection*{4.2.5 ET.NET (model LQE520) error log info and required actions}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x0010 & Bus error & \multirow[t]{9}{*}{Reset the LPU module. Then, if the same error recurs, the ET.NET module may be in a failure condition. Replace the module.} \\
\hline 0x0011 & Address error & \\
\hline 0x0012 & Illegal instruction & \\
\hline 0x0013 & Division by zero & \\
\hline 0x0014 & Privileged-instruction violation & \\
\hline 0x0016 & Format error & \\
\hline 0x0017 & Spurious interrupt & \\
\hline 0x0018 & Unsupported exception & \\
\hline 0x0019 & Parity error & \\
\hline 0x0100 & Module no. setting error & The module no. setting switch is set incorrectly. Correct the module no. setting by referring to the information provided under "2.1 Names and Functions of Each Part" in the "ET.NET (manual number SVE-1-103)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x0102 & ROM1 checksum error & \multirow[t]{5}{*}{Reset the LPU module. Then, if the same error recurs, the ET.NET module may be in a failure condition. Replace the module.} \\
\hline 0x0103 & RAM1 compare error & \\
\hline 0x0105 & RAM2 compare error & \\
\hline 0x010B & ROM3 checksum error & \\
\hline 0x0112 & Microprogram error & \\
\hline 0x0113 & IP address not defined yet & Define an IP address. Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x0114 & MAC address not defined yet & Reset the LPU module. Then, if the same error recurs, the ET.NET module may be in a failure condition. Replace the module. \\
\hline 0x0200 & Routing information setting error & An error is detected in the routing information settings. Correct the error by referring to the information provided under "7.3.4 Route information setting error table" in the "ET.NET (manual number SVE-1-103). \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}

\subsection*{4.2.6 SV.LINK (model LQE521) error log info and required actions}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x0010 & Bus error & \multirow[t]{9}{*}{Reset the LPU module. Then, if the same error recurs, the SV.LINK module may be in a failure condition. Replace the module.} \\
\hline 0x0011 & Address error & \\
\hline 0x0012 & Illegal instruction & \\
\hline 0x0013 & Division by zero & \\
\hline 0x0014 & Privileged-instruction violation & \\
\hline 0x0016 & Format error & \\
\hline 0x0017 & Spurious interrupt & \\
\hline 0x0018 & Unsupported exception & \\
\hline 0x0019 & Parity error & \\
\hline 0x0100 & Module no. setting error & The module no. setting switch is set incorrectly. Correct the module no. setting by referring to the information provided under "4.1 Start-up Procedure" in the "SV.LINK (manual number SVE-1-116)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x0102 & ROM1 checksum error & \multirow[t]{5}{*}{Reset the LPU module. Then, if the same error recurs, the SV.LINK module may be in a failure condition. Replace the module.} \\
\hline 0x0103 & RAM1 compare error & \\
\hline 0x0105 & RAM2 compare error & \\
\hline 0x010B & ROM3 checksum error & \\
\hline 0x0112 & Microprogram error & \\
\hline 0x0113 & IP address not defined yet & Define an IP address. Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x0114 & MAC address not defined yet & Reset the LPU module. Then, if the same error recurs, the SV.LINK module may be in a failure condition. Replace the module. \\
\hline 0x0201 & Communication parameter setting error & The set value of a parameter is in error. Correct the error by referring to the information provided under "5.4 Status and Communication Parameter Areas" in the "SV.LINK (manual number SVE-1-116)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline
\end{tabular}

\subsection*{4.2.7 SD.LINK (model LQE530) error log info and required actions}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x0010 & Bus error & \multirow[t]{11}{*}{Reset the LPU module. Then, if the same error recurs, the SD.LINK module may be in a failure condition. Replace the module.} \\
\hline 0x0011 & Address error & \\
\hline 0x0012 & Illegal instruction & \\
\hline 0x0013 & Division by zero & \\
\hline 0x0014 & Privileged-instruction violation & \\
\hline 0x0015 & WDT error & \\
\hline 0x0016 & Format error & \\
\hline 0x0017 & Spurious interrupt & \\
\hline 0x0018 & Unsupported exception & \\
\hline 0x0019 & Parity error & \\
\hline 0x001A & GR warning & \\
\hline 0x0100 & Module no. setting error & The module no. setting switch is set incorrectly. Correct the module no. setting by referring to the information provided under " 2 NAMES AND FUNCTIONS OF EACH PART" in the "SD.LINK (manual number SVE-1-115)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x0101 & CPL switch setting error & The CPL no. setting switch is set incorrectly. Correct the CPL no. setting by referring to the information provided under "2 NAMES AND FUNCTIONS OF EACH PART" and "4.2 Setting Switches" in the "SD.LINK (manual number SVE-1-115)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x0102 & ROM1 checksum error & \multirow[t]{6}{*}{Reset the LPU module. Then, if the same error recurs, the SD.LINK module may be in a failure condition. Replace the module.} \\
\hline 0x0103 & RAM1 compare error & \\
\hline 0x0105 & RAM2 compare error & \\
\hline 0x010B & ROM3 checksum error & \\
\hline 0x010C & ROM3 clear error, program-related & \\
\hline 0x010D & ROM3 write error, program-related & \\
\hline 0x010E & ROM3 clear error, parameter-related & \multirow[t]{2}{*}{Reset the LPU module and set all necessary parameters again. Then, if the same error recurs, the SD.LINK module may be in a failure condition. Replace the module.} \\
\hline 0x010F & ROM3 write error, parameterrelated & \\
\hline 0x0110 & Too many ROM rewrites attempted & Replace the module. \\
\hline 0x0111 & CPL no. duplicated & A duplicated CPL no. is detected. Correct the CPL no. setting by referring to the information provided under "2 NAMES AND FUNCTIONS OF EACH PART" and "4.2 Setting Switches" in the "SD.LINK (manual number SVE-1-115)." \\
\hline 0x0112 & Non-matching parameter type detected (e.g., a parameter specified for use in an S10mini controller), or parameter error (incorrect SUM value) & A parameter previously set for use in an S10mini controller, or a parameter error is detected. Correct the parameters by referring to the information provided under "4.6 Commands" in the "SD.LINK (manual number SVE-1-115)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline
\end{tabular}

\subsection*{4.2.8 J.NET (model LQE541) / J.NET-INT (model LQE547) error log info and required actions}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x0010 & Bus error & \multirow[t]{10}{*}{Reset the LPU module. Then, if the same error recurs, the J.NET/J.NET-INT module may be in a failure condition. Replace the module.} \\
\hline 0x0011 & Address error & \\
\hline 0x0012 & Illegal instruction & \\
\hline 0x0013 & Division by zero & \\
\hline 0x0014 & Privileged-instruction violation & \\
\hline 0x0015 & WDT error & \\
\hline 0x0016 & Format error & \\
\hline 0x0017 & Spurious interrupt & \\
\hline 0x0018 & Unsupported exception & \\
\hline 0x0019 & Parity error & \\
\hline 0x0100 & Module no. setting error & The module no. setting switch is set incorrectly. Correct the module no. setting by referring to the information provided under "2.1 Names and Functions of Each Part" in the "J.NET (manual number SVE-1-132)" or "J.NET-INT (manual number SVE-1133)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x0101 & Bit rate setting error & The bit rate setting switch is set incorrectly. Correct the bit rate setting by referring to the information provided under "2.1 Names and Functions of Each Part" in the "J.NET (manual number SVE-1-132)" or "J.NET-INT (manual number SVE-1133)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x0102 & ROM1 checksum error & Reset the LPU module. Then, if the same error recurs, the \\
\hline 0x0103 & RAM1 compare error & J.NET/J.NET-INT module may be in a failure condition. \\
\hline 0x0105 & RAM2 compare error & Replace the module. \\
\hline 0x0107 & DMA1 transfer error, transmissionrelated & \\
\hline 0x0108 & DMA2 transfer error, transmissionrelated & \\
\hline 0x0109 & DMA1 transfer error, reception-related & \\
\hline 0x010A & DMA2 transfer error, reception-related & \\
\hline 0x010B & ROM3 checksum error & \\
\hline 0x010C & ROM clear error, program-related & \\
\hline 0x010D & ROM write error, program-related & \\
\hline 0x010E & ROM clear error, parameter-related & Reset the LPU module and set all necessary parameters again. \\
\hline 0x010F & ROM write error, parameter-related & Then, if the same error recurs, the J.NET/J.NET-INT module may be in a failure condition. Replace the modules. \\
\hline 0x0110 & Too many ROM rewrites attempted & Replace the module. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x0112 & Non-matching parameter type detected (e.g., a parameter specified for use in an S10mini controller), or parameter error (incorrect SUM value) & A parameter previously set for use in an S10mini controller, or a parameter error is detected. Correct the parameters by referring to the information provided under "4.2 Commands" in the "J.NET (manual number SVE-1-132)" or "J.NET-INT (manual number SVE-1-133)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x2010 & CRC check error & \multirow[t]{7}{*}{\begin{tabular}{l}
- Check if the communication line is functioning properly. \\
- Check if there is any mismatch between the parameter settings and remote-station settings. \\
- After the above checks and troubleshooting, if the same error recurs, replace the J.NET/J.NET-INT module.
\end{tabular}} \\
\hline 0x2020 & Station number error -- a station number outside the range 128 to 254 is detected, or the station number of the receiving station is incorrect. & \\
\hline 0x2030 & Undefined service requested & \\
\hline 0x2040 & I-/UI-frame length error -- an I-frame 137 or more bytes long, or a UI-frame 134 or more bytes long is detected. & \\
\hline 0x2041 & I-frame (response) error -- a response Iframe to an I-frame not transmitted before is received. & \\
\hline 0x2042 & S-frame error -- an I-frame is received in place of an expected S-frame. & \\
\hline 0x2050 & Data link procedure error & \\
\hline 0x2060 & Timeout generated -- no response is received from the slave. & \multirow[t]{2}{*}{\begin{tabular}{l}
- Turn off the power to the remote station and back on again. \\
- Check if the switch settings of both the J.NET/J.NET-INT module and remote station are all correct. \\
- If the above actions do not solve the problem, replace the remote station.
\end{tabular}} \\
\hline 0x2061 & The error could not be recovered by retry. & \\
\hline 0x2070 & Frame transmission/reception error -no frame can be sent out to the communication line, or an error is detected in frame reception. & \begin{tabular}{l}
- Check if the communication line is connected to the J.NET/J.NET-INT module properly, and if terminating resisters are connected to both ends of the line. \\
- Check if there is any mismatch between the parameter settings and remote-station settings. \\
- Reset the LPU module. Then, if the same error recurs, restart the LPU module. \\
- If the above actions do not solve the problem, replace the J.NET/J.NET-INT module.
\end{tabular} \\
\hline 0x2080 & Error detected -- an error other than the above. & \begin{tabular}{l}
- Reset the LPU module. Then, if the same error recurs, restart the LPU module. \\
- If the above action does not solve the problem, replace the J.NET/J.NET-INT module.
\end{tabular} \\
\hline 0x7061 & Input of input data is in progress -- the input of input data is not completed at the remote station yet. & \begin{tabular}{l}
- This is not an error. \\
- Processing will go on normally upon completion of the input of input data.
\end{tabular} \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}
(3/3)
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x7110 & Undefined service requested & \multirow[t]{3}{*}{\begin{tabular}{l}
- Reset the LPU module. Then, if the same error recurs, restart the LPU module. \\
- If the above action does not solve the problem, replace the J.NET/J.NET-INT module.
\end{tabular}} \\
\hline 0x7120 & Data length error & \\
\hline 0x7130 & Packet structure error & \\
\hline 0x8020 & SVPT error -- an initialization request is rejected. & \multirow[t]{3}{*}{\begin{tabular}{l}
- There is a mismatch between the parameter settings and remotestation settings. Set the parameters correctly so that they match the remote-station settings. \\
- If the above action does not solve the problem, replace the remote station.
\end{tabular}} \\
\hline 0x8081 & SVPT error -- in AUTO mode, the defined number of transfer bytes does not match the response I/O size from the remote station. & \\
\hline 0x8082 & SVPT error -- with a specified slot, the defined number of transfer bytes does not match the response I/O size from the remote station. & \\
\hline 0x9001 & Remote station stopped & \multirow[t]{3}{*}{\begin{tabular}{l}
- Turn off the power to the remote station and back on again, and then reset the CPU. \\
- If the above action does not solve the problem, replace the remote station.
\end{tabular}} \\
\hline 0x9002 & Remote station abnormal & \\
\hline 0x9003 & Remote station abnormal and stopped & \\
\hline 0xA020 & PUT/GET error -- address data is insufficient. & \multirow[t]{4}{*}{Review the PUT/GET service request used on the remote-station side.} \\
\hline 0xA021 & PUT/GET error -- address field count error. & \\
\hline 0xA022 & PUT/GET error -- an address field contains a numeric value. & \\
\hline 0xA040 & PUT/GET error -- an odd-numbered address is detected. & \\
\hline
\end{tabular}

\subsection*{4.2.9 IR.LINK (model LQE548) error log info and required actions}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x0010 & Bus error & \multirow[t]{10}{*}{Reset the LPU module. Then, if the same error recurs, the IR.LINK module may be in a failure condition. Replace the module.} \\
\hline 0x0011 & Address error & \\
\hline 0x0012 & Illegal instruction & \\
\hline 0x0013 & Division by zero & \\
\hline 0x0014 & Privileged-instruction violation & \\
\hline 0x0015 & WDT error & \\
\hline 0x0016 & Format error & \\
\hline 0x0017 & Spurious interrupt & \\
\hline 0x0018 & Unsupported exception & \\
\hline 0x0019 & Parity error & \\
\hline 0x0100 & Module no. setting error & The module no. setting switch is set incorrectly. Correct the module no. setting by referring to the information provided under " 2 NAMES AND FUNCTIONS OF EACH PART" in the "IR.LINK (manual number SVE-1-134)". Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x0101 & Bit rate setting error & The bit rate setting switch is set incorrectly. Correct the bit rate setting by referring to the information provided under " 2 NAMES AND FUNCTIONS OF EACH PART" in the "IR.LINK (manual number SVE-1-134)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x0102 & ROM1 checksum error & \multirow[t]{3}{*}{Reset the LPU module. Then, if the same error recurs, the IR.LINK module may be in a failure condition. Replace the module.} \\
\hline 0x0103 & RAM1 compare error & \\
\hline 0x0105 & RAM2 compare error & \\
\hline 0x010B & ROM3 checksum error & \multirow[t]{3}{*}{Reset the LPU module. Then, if the same error recurs, the IR.LINK module may be in a failure condition. Replace the module.} \\
\hline 0x010C & ROM clear error, program-related & \\
\hline 0x010D & ROM write error, program-related & \\
\hline 0x010E & ROM clear error, parameter-related & \multirow[t]{2}{*}{Reset the LPU module and set all necessary parameters again. Then, if the same error recurs, the IR.LINK module may be in a failure condition. Replace the module.} \\
\hline 0x010F & ROM write error, parameter-related & \\
\hline 0x0110 & Too many ROM rewrites attempted & An attempt is made to rewrite the ROM more than 50,000 times. Replace the module. \\
\hline 0x0112 & Non-matching parameter type detected (e.g., a parameter specified for use in an S10mini controller), or parameter error (incorrect SUM value) & A parameter previously set for use in an S10mini controller, or a parameter error is detected. Correct the parameters by referring to the information provided under "4.3 Commands" in the "IR.LINK (manual number SVE-1-134)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x2010 & CRC check error & \multirow[t]{7}{*}{\begin{tabular}{l}
- Check if the communication line is functioning properly. \\
- Check if there is any mismatch between the parameter settings and remote-station settings. \\
- After the above checks and troubleshooting, if the same error recurs, replace the IR.LINK module.
\end{tabular}} \\
\hline 0x2020 & Station number error -- a station number outside the range 128 to 254 is detected, or the station number of the receiving station is incorrect & \\
\hline 0x2030 & Undefined service requested & \\
\hline 0x2040 & I-/UI-frame length error -- an I-frame 137 or more bytes long, or a UI-frame 134 or more bytes long is detected. & \\
\hline 0x2041 & I-frame (response) error -- a response Iframe to an I-frame not transmitted before is received. & \\
\hline 0x2042 & S-frame error -- an I-frame is received in place of an expected S-frame. & \\
\hline 0x2050 & Data link procedure error & \\
\hline 0x2060 & Timeout generated -- no response is received from the slave. & \multirow[t]{2}{*}{\begin{tabular}{l}
- Turn off the power to the remote station and back on again. \\
- If the above action does not solve the problem, check if the switch settings of both the IR.LINK module and remote station are all correct. \\
- If none of the above actions solves the problem, replace the remote station.
\end{tabular}} \\
\hline 0x2061 & The error could not be recovered by retry. & \\
\hline 0x2070 & Frame transmission/reception error -no frame can be sent out to the communication line, or an error is detected in frame reception. & \begin{tabular}{l}
- Check if the communication line is connected to the IR.LINK module properly, and if terminating resisters are connected to both ends of the line. \\
- Check if there is any mismatch between the parameter settings and remote-station settings. \\
- Reset the LPU module. Then, if the same error recurs, restart the LPU module. \\
- If the above actions do not solve the problem, replace the IR.LINK module.
\end{tabular} \\
\hline 0x2080 & Error detected -- an error other than the above. & \begin{tabular}{l}
- Reset the LPU module. Then, if the same error recurs, restart the LPU module. \\
- If the above action does not solve the problem, replace the IR.LINK module.
\end{tabular} \\
\hline 0x7110 & Undefined service requested & \multirow[t]{3}{*}{\begin{tabular}{l}
- Reset the LPU module. Then, if the same error recurs, restart the controller. \\
- If the above action does not solve the problem, replace the IR.LINK module.
\end{tabular}} \\
\hline 0x7120 & Data length error & \\
\hline 0x7130 & Packet structure error & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x8020 & SVPT error -- an initialization request is rejected. & \multirow[t]{3}{*}{\begin{tabular}{l}
- There is a mismatch between the parameter settings and remotestation settings. Set the parameters correctly so that they match the remote-station settings. \\
- If the above action does not solve the problem, replace the remote station.
\end{tabular}} \\
\hline 0x8081 & SVPT error -- in AUTO mode, the defined number of transfer bytes does not match the response I/O size from the remote station. & \\
\hline 0x8082 & SVPT error -- with a specified slot, the defined number of transfer bytes does not match the response I/O size from the remote station. & \\
\hline 0x9001 & Remote station stopped & \multirow[t]{3}{*}{\begin{tabular}{l}
- Turn off the power to the remote station and back on again, and then reset the LPU. \\
- If the above action does not solve the problem, replace the remote station.
\end{tabular}} \\
\hline 0x9002 & Remote station abnormal & \\
\hline 0x9003 & Remote station abnormal and stopped & \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}

\subsection*{4.2.10 CPU LINK (model LQE550) error log info and required actions}
\begin{tabular}{|l|l|l|}
\hline Error code & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Required action } \\
\hline \(0 x 0002\) & WDT timeout error & \begin{tabular}{l}
Reset the LPU module. Then, if the same error recurs, the inter- \\
CPU link module may be in a failure condition. Replace the \\
module.
\end{tabular} \\
\hline \(0 x 0004\) & \begin{tabular}{l}
ROM checksum error -- an error is \\
detected in the ROM.
\end{tabular} & \begin{tabular}{l}
RAM check error -- an error is detected \\
in the system program.
\end{tabular}
\end{tabular}

\subsection*{4.2.11 RS-232C (model LQE560) / RS-422 (model LQE565) error log info and required actions}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x0010 & Bus error & \multirow[t]{8}{*}{Reset the LPU module. Then, if the same error recurs, the RS-232C/RS-422 module may be in a failure condition. Replace the module.} \\
\hline 0x0011 & Address error & \\
\hline 0x0012 & Illegal instruction & \\
\hline 0x0013 & Division by zero & \\
\hline 0x0014 & Privileged-instruction violation & \\
\hline 0x0015 & WDT timeout error & \\
\hline 0x0018 & Unsupported exception & \\
\hline 0x0019 & RAM parity error & \\
\hline 0x0100 & Module no. setting error & The module no. setting switch is set incorrectly. Correct the module no. setting by referring to the information provided under "2.1 Names and Functions of Each Part" in the "RS-232C/422 (manual number SVE-1-121)." \\
\hline 0x0102 & ROM checksum error & \multirow[t]{2}{*}{Reset the LPU module. Then, if the same error recurs, the RS\(232 \mathrm{C} / \mathrm{RS}-422\) module may be in a failure condition. Replace the module.} \\
\hline 0x0103 & RAM compare error & \\
\hline 0x0112 & LGB setting error & Correct the LGB setting. Then, if the same error recurs, the RS-232C/RS-422 module may be in a failure condition. Replace the module. \\
\hline 0x1000 & Reception process aborted because of "local station first" -- due to the start of a transmission requested on a "local station first" basis during data reception, the data reception is aborted and a data transmission is started. & Change the LGB priority control setting to "no priority control" (full-duplex communication). \\
\hline 0x1080 & Transmission unachievable because of "remote station first" -- data transmission cannot be done because a data reception is currently in process on a "remote station first" basis. & Data transmission will be started after the data reception is completed. \\
\hline 0x1081 & Transmission unachievable because of a missing send request (CS) in CS input & \multirow[t]{2}{*}{\begin{tabular}{l}
- Check if there is any incorrect control signal setting in the destination device. \\
- Check if the cable wiring for the RS-232C/RS-422 module is done properly.
\end{tabular}} \\
\hline 0x1082 & Transmission unachievable because a "not ready" DR (data set ready) input condition is detected by a DR check. & \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x1083 & Transmission suspension timed out -after a transmission in progress was suspended by a suspend code, it has not been resumed by a resume code within a specified transmission suspension monitoring time period. & \begin{tabular}{l}
- Check the destination device settings and communication program. \\
- Check the LGB settings.
\end{tabular} \\
\hline 0x1084 & Send request (CS) timed out -- after a transmission in progress was suspended due to a change in indication of the CS (send request) input to "send request not present", it has not been resumed due to a change in indication of the CS input to "send request present". & \begin{tabular}{l}
- Check if there is any incorrect control signal setting in the destination device. \\
- Check if the cable wiring for the RS-232C/RS-422 module is done properly.
\end{tabular} \\
\hline 0x1085 & DR timed out -- a transmission in progress was suspended because it was found by a specified DR (data set ready) check that the indication of the DR input changed to "not ready" during the transmission; then, the suspended transmission has not been resumed, because the indication of the DR input did not change to "ready" within a specified transmission suspension monitoring time period. & \\
\hline 0x2002 & Buffer with the reception process aborted -- due to the start of a transmission requested on a "local station first" basis during a data reception, there is a buffer that has the data reception process aborted. & Change the LGB priority control setting to "no priority control" (full-duplex communication). \\
\hline 0x2080 & Parity error in reception -- a parity error is detected in the received data. & - Check if there is any mismatch between the LGB settings and the destination device's communication settings. \\
\hline 0x2081 & Overrun error in reception -- an overrun error is detected in handling the received data. & - Check if there is any noise source near the laid cable. \\
\hline 0x2082 & Framing error in reception -- a framing error is detected in the received data. & \\
\hline 0x2083 & Reception timed out -- not all the expected data has been received within a specified reception monitoring time period. & Check the reception monitoring time period setting among the LGB settings. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x2084 & ASCII conversion error -- in a requested ASCII conversion, data outside the ranges " 0 " to " 9 " and "A" to " \(F\) " is received. & \multirow[t]{3}{*}{Review the application running on the destination device.} \\
\hline 0x2085 & End code error -- in a requested ASCII conversion, data outside the ranges " 0 " to " 9 " and "A" to " \(F\) ", or a non-end code is received. & \\
\hline 0x2086 & BCC error -- in a BCC reception, a BCC mismatch is detected by a specified BCC check. & \\
\hline 0x2087 & Carrier detection timed out -- the CD (carrier detection) input indicated no carrier present, resulting in the suspended reception; then, the suspended reception has not been resumed, because the CD input did not indicate a carrier present within the reception monitoring time period. & \begin{tabular}{l}
- Check if there is any incorrect setting made for the destination device. \\
- Check if the connecting cable to the RS-232C/RS-422 module is broken.
\end{tabular} \\
\hline 0x2088 & Receive buffer full -- new received data is discarded because a maximum of eight cases of data are already stored in the receive buffer. & Input the received data by starting the reception handler. \\
\hline 0x2089 & Reception error due to noise -- an error due to noise is detected in the received data. & Check if there is any noise source near the laid cable. \\
\hline
\end{tabular}

\subsection*{4.2.12 D.NET (model LQE570/575) error log info and required actions}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x1401 & MPU register compare error & \multirow[t]{7}{*}{Reset the LPU module. Then, if the same error recurs, the D.NET module may be in a failure condition. Replace the module.} \\
\hline 0x1402 & MPU operation check error & \\
\hline 0x1403 & CAN register compare error & \\
\hline 0x1405 & ROM compare error & \\
\hline 0x1406 & ROM checksum error, program-related & \\
\hline 0x1407 & RAM compare error & \\
\hline 0x1409 & MPU built-in timer diagnosis error & \\
\hline 0x140A & Module no. setting error & The module no. setting switch is set incorrectly. Correct the module no. setting by referring to the information provided under " 2 NAMES AND FUNCTIONS OF EACH PART" in the "D.NET (manual number SVE-1-106)." \\
\hline 0x140D & ROM checksum error, parameter-related & \multirow[t]{3}{*}{Reset the LPU module. Then, if the same error recurs, the D.NET module may be in a failure condition. Replace the module.} \\
\hline 0x2404 & WDT timeout error & \\
\hline 0x34XX & \begin{tabular}{l}
Undefined interrupt detected. \\
(Except for the below, the "XX" in this error code is a vector number.) \\
\(X X=04\) : Common illegal instruction detected. \\
\(X X=06\) : Slot illegal instruction detected. \\
\(X X=09\) : Address error.
\end{tabular} & \\
\hline 0x4281 & Duplicated MAC ID & Check the set value of the Node Address setting switch. \\
\hline 0x5188 & Communication word count setting error & Check the parameter settings. \\
\hline 0x5189 & Non-matching parameter type detected (e.g., a parameter specified for use in an S10mini controller), or ROM3 checksum error & A parameter previously set for use in an S10mini controller, or a parameter error is detected. Correct the parameters by referring to the information provided under "4.5 Setting Parameters" in the "D.NET (manual number SVE-1-106)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x7381 & Transmission path bus-OFF detected & Check the connector connections (for looseness), cable wiring, and transmission speed, MAC ID, and module no. settings. \\
\hline 0x8181 & CAN transmission timeout error & \begin{tabular}{l}
Check the connector connections (for looseness), cable wiring, and transmission speed, MAC ID, and module no. settings. \\
This type of error also occurs in the following cases, but the \\
D.NET module is functioning properly: \\
- The communication connector of the D.NET module is not connected yet. \\
- The remote station is not found or powered off. \\
- The transmission speed of the remote station does not match the local station's. \\
However, this type of error will not occur if the network has another station installed except this D.NET module (even when the station does not communicate with the D.NET module directly).
\end{tabular} \\
\hline
\end{tabular}
D.NET (model LQE770/775) error log info and required actions
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x1401 & MPU register compare error & \multirow[t]{7}{*}{Reset the LPU module. Then, if the same error recurs, the D.NET module may be in a failure condition. Replace the module.} \\
\hline 0x1402 & MPU operation check error & \\
\hline 0x1403 & CAN register compare check error & \\
\hline 0x1405 & FROM compare check error & \\
\hline 0x1406 & FROM checksum error, microprogramrelated & \\
\hline 0x1407 & SRAM compare check error & \\
\hline 0x1409 & MPU built-in timer diagnosis error & \\
\hline 0x140A & Module no. setting error & The module no. setting switch is set incorrectly. Correct the module no. setting by referring to the information provided under "2 NAMES AND FUNCTIONS OF EACH PART" in the "D.NET (manual number SVE-1-129)." \\
\hline 0x518C & Module combination mounting error & \multirow[t]{4}{*}{Reset the LPU module. Then, if the same error recurs, the D.NET module may be in a failure condition. Replace the module.} \\
\hline 0x140D & FROM checksum error, parameterrelated & \\
\hline 0x2404 & WDT timeout error & \\
\hline 0x34XX & \begin{tabular}{l}
Undefined interrupt detected. (Except for the below, the "XX" in this error code is a vector number.) \\
\(X X=04\) : Common illegal instruction detected. \\
\(X X=06\) : Slot illegal instruction detected. \\
\(X X=09\) : Address error.
\end{tabular} & \\
\hline 0x4281 & Duplicated MAC ID & Check the set value of the Node Address setting switch. \\
\hline 0x5188 & Communication word count setting error & Check the parameter settings. \\
\hline 0x5189 & Parameter setting error & The set value of a parameter is in error. Correct the error by referring to the information provided under "4.5 Parameter Setting" in the "D.NET (manual number SVE-1-129)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x7381 & Transmission path bus-OFF detected & Check the connector connections (for looseness), cable wiring, and transmission speed, MAC ID, and module no. settings. \\
\hline 0x8181 & CAN transmission timeout error & \begin{tabular}{l}
Check the connector connections (for looseness), cable wiring, and transmission speed, MAC ID, and module no. settings. \\
This type of error also occurs in the following cases, but the D.NET module is functioning properly: \\
- The communication connector of the D.NET module is not connected yet. \\
- The remote station is not found or powered off. \\
- The transmission speed of the remote station does not match the local station's. \\
However, this type of error will not occur if the network has another station installed except this D.NET module (even when the station does not communicate with the D.NET module directly).
\end{tabular} \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}

\subsection*{4.2.13 EQ.LINK (model LQE701) error log info and required actions}
\begin{tabular}{|c|c|c|}
\hline Error code & Meaning & Required action \\
\hline 0x0010 & Bus error & \multirow[t]{9}{*}{Reset the LPU module. Then, if the same error recurs, the EQ.LINK module may be in a failure condition. Replace the module.} \\
\hline 0x0011 & Address error & \\
\hline 0x0012 & Illegal instruction & \\
\hline 0x0013 & Division by zero & \\
\hline 0x0014 & Privileged-instruction violation & \\
\hline 0x0016 & Format error & \\
\hline 0x0017 & Spurious interrupt & \\
\hline 0x0018 & Unsupported exception & \\
\hline 0x0019 & Parity error & \\
\hline 0x0100 & Module no. setting error & The module no. setting switch is set incorrectly. Correct the module no. setting by referring to the information provided under "3.3 Setting the Module Number Selector Switch" in the "EQ.LINK (manual number SVE-1-124)." \\
\hline 0x0102 & ROM1 checksum error & \multirow[t]{3}{*}{Reset the LPU module. Then, if the same error recurs, the EQ.LINK module may be in a failure condition. Replace the module.} \\
\hline 0x0103 & RAM1 compare error & \\
\hline 0x0105 & RAM2 compare error & \\
\hline 0x010B & ROM3 checksum error & The set value of a parameter is in error. Correct the error by referring to the information provided under "5.2.3 Setting of link parameters" and "5.2.4 Setup common memory division" in the "EQ.LINK (manual number SVE-1-124)." Then, reset the controller, or turn off the power to the controller and back on again. \\
\hline 0x0112 & Microprogram error & Reset the LPU module. Then, if the same error recurs, the EQ.LINK module may be in a failure condition. Replace the module. \\
\hline 0x0113 & IP address not defined yet & Set an IP address parameter by referring to the information provided under "5 Operation" in the "EQ.LINK (manual number SVE-1-124)." \\
\hline 0x0114 & MAC address not defined yet & Reset the LPU module. Then, if the same error recurs, the EQ.LINK module may be in a failure condition. Replace the module. \\
\hline 0x0120 & LPU switched to master (CPU RUN) & These pieces of information are presented not to report module errors but to notify the completion of system startup or LPU \\
\hline 0x0121 & LPU switched to slave (CPU STOP) & switching between master and slave. \\
\hline 0x0122 & Module logically separated from the network (CPU down) & This error code is presented when the LPU has detected a serious problem. For details, see the LPU's error log. \\
\hline 0x0200 & Not participating in the network & The EQ.LINK module is currently not a member of the network (or is performing the participation process). For information on how to solve this problem, refer to the information provided under "6.3 Network Problems and Repairing" in the "EQ.LINK (manual number SVE-1-124)." \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Error code & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Required action } \\
\hline \(0 \times 0201\) & \(\begin{array}{l}\text { Common memory settings } \\
\text { duplicated }\end{array}\) & \(\begin{array}{l}\text { In the common memory division setup given, the local node's } \\
\text { common memory area is duplicated with the remote node's. By } \\
\text { referring to the information provided under "5.2.4 Setup common } \\
\text { memory division" in the "EQ.LINK (manual number SVE-1-124)," } \\
\text { correct the setup so that the common memory offset value may not } \\
\text { be duplicated between the local and the remote node. }\end{array}\) \\
(If this type of error occurs, the common memory settings [area \\
address and word count] of the node in which the error is detected \\
are automatically set to 0.)
\end{tabular}\(\left.\left.\} \begin{array}{l}\text { The set node number of the EQ.LINK module is duplicated with } \\
\text { another node's in the same network. By referring to the } \\
\text { information provided under "5.2.3 Setting of link parameters" in } \\
\text { the "EQ.LINK (manual number SVE-1-124)," correct the duplicated } \\
\text { setting so that the node number will not be duplicated between the } \\
\text { local and the remote node. } \\
\text { (If this type of error occurs, the node for which the duplicated node }\end{array}\right\} \begin{array}{l}\text { number is set is blocked from participating in the network. After } \\
\text { correcting the error, you can make the node participate in the } \\
\text { network by turning the power to the module off and back on again, } \\
\text { or by issuing a participation request from the EQ.LINK system.) }\end{array}\right\}\)

\subsection*{4.2.14 ET.NET (model LQE720) error log info and required actions}

ET.NET-related errors are reported by presenting error messages in one of the formats shown under

\section*{"4.3 CMU Error Message Formats."}

1/3)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Error log title & Error code & Error message & Brief description & \[
\begin{array}{|c|}
\hline \text { ALARM } \\
\text { LED }
\end{array}
\] & \[
\begin{aligned}
& \text { ERR } \\
& \text { LED }
\end{aligned}
\] & Required action \\
\hline 1 & \%CPMS-E-SOFT-0001 & EC=03620000 & Program error (Invalid Data Access) & Data access error & \[
\stackrel{-}{(\mathrm{OFF})}
\] & (OFF) & Hardware replacement \\
\hline 2 & \%CPMS-E-SOFT-0001 & EC=03660000 & Program error (Data Access Protection) & Data access protection error & - & - & Hardware replacement \\
\hline 3 & \%CPMS-E-SOFT-0001 & EC=03600000 & Program error (Data Page Fault) & Data access page fault & - & - & Hardware replacement \\
\hline 4 & \%CPMS-E-SOFT-0001 & EC=03420000 & Program error (Invalid Inst. Access) & Instruction access error & - & & Hardware replacement \\
\hline 5 & \%CPMS-E-SOFT-0001 & EC=03460000 & Program error (Inst. Access Protection) & Instruction access protection error & - & & Hardware replacement \\
\hline 6 & \%CPMS-E-SOFT-0001 & EC=03400000 & Program error (Instruction Page Fault) & Instruction access page fault & - & & Hardware replacement \\
\hline 7 & \%CPMS-E-SOFT-0001 & EC=03030000 & Program error (Inst. Alignment Error) & Instruction alignment error & - & - & Hardware replacement \\
\hline 8 & \%CPMS-E-SOFT-0001 & EC=03080000 & Program error (Privileged Instruction) & Privileged-instruction violation & - & - & Hardware replacement \\
\hline 9 & \%CPMS-E-SOFT-0001 & EC=03040000 & Program error (Illegal Instruction) & Illegal instruction error & - & - & Hardware replacement \\
\hline 10 & \%CPMS-E-SOFT-0001 & EC=03390000 & Program error (FP Program Error) & Floating-point arithmetic error & - & - & Hardware replacement \\
\hline 11 & \%CPMS-E-SOFT-0001 & EC=03470000 & Program error (Data Alignment Error) & Data alignment error & - & - & Hardware replacement \\
\hline 12 & \%CPMS-E-SOFT-0002 & EC=05130000 & Macro parameter error & Undefined macro issued & - & - & Hardware replacement \\
\hline 13 & \%CPMS-E-SOFT-0002 & EC=05110000 & Macro parameter error & Macro parameter abnormal & - & - & Hardware replacement \\
\hline 14 & \%CPMS-E-SOFT-0005 & EC=05C70000 & WDT timeout error & Watchdog timer timeout & - & ON & Hardware replacement \\
\hline 15 & \%CPMS-E-HARD-0006 & EC=03B70000 & Module error (Bus Target Abort) & Bus target abort & - & - & Hardware replacement \\
\hline 16 & \%CPMS-E-HARD-0006 & EC=05000000 & Module error (Invalid Interrupt) & Invalid interrupt & - & - & Hardware replacement \\
\hline 17 & \%CPMS-E-HARD-0006 & EC=05000001 & Module error (Undefined Invalid Interrupt) & Undefined invalid interrupt & - & - & Hardware replacement \\
\hline 18 & \%CPMS-E-HARD-0006 & EC=05000002 & Module error (INTEVT Invalid Interrupt) & INTEVT invalid interrupt & - & - & Hardware replacement \\
\hline 19 & \%CPMS-E-HARD-0006 & EC=0500F001 & Module error (HERST Invalid Interrupt) & Serious-error invalid interrupt & - & - & Hardware replacement \\
\hline 20 & \%CPMS-E-HARD-0006 & EC=0500F002 & Module error (HERST2 Invalid Interrupt) & Serious-error invalid interrupt 2 & - & - & Hardware replacement \\
\hline 21 & \%CPMS-E-HARD-0006 & EC=0500F003 & Module error (BUERRSTAT Invalid Interrupt) & Bus serious-error interrupt status invalid & - & - & Hardware replacement \\
\hline 22 & \%CPMS-E-HARD-0006 & EC=0500F006 & Module error (NHPMCLG Invalid Interrupt) & Memory serious-error interrupt status invalid & - & - & rdware replacement \\
\hline 23 & \%CPMS-E-HARD-0006 & EC=0500F007 & Module error (ECC 2bit Master Invalid Interrupt) & Memory ECC-detected 2-bit serious-error status invalid & - & - & Hardware replacement \\
\hline 24 & \%CPMS-E-HARD-0006 & EC=0500F008 & Module error (RERRMST Invalid Interrupt) & RERR interrupt status invalid & - & - & Hardware replacement \\
\hline 25 & \%CPMS-E-HARD-0006 & EC=0500C001 & Module error (NINTR Invalid Interrupt) & NINT status invalid & - & - & Hardware replacement \\
\hline 26 & \%CPMS-E-HARD-0006 & EC=0500B001 & Module error (PUINTR Invalid Interrupt) & PUINT status invalid & - & - & Hardware replacement \\
\hline 27 & \%CPMS-E-HARD-0006 & EC=05005001 & Module error (RINTR Invalid Interrupt) & RINT status invalid & - & - & Hardware replacement \\
\hline 28 & \%CPMS-E-HARD-0006 & EC=05003001 & Module error (LV3 INTST Invalid Interrupt) & Level-3 interrupt status invalid & - & - & Hardware replacement \\
\hline 29 & \%CPMS-E-HARD-0006 & EC=05003002 & Module error (RQI6 INF Invalid Interrupt) & RQI6 status invalid & - & - & Hardware replacement \\
\hline 30 & \%CPMS-E-HARD-0006 & EC=05001001 & Module error (RQI3 INT Invalid Interrupt) & RQI3 status invalid & & - & Hardware replacement \\
\hline 31 & \%CPMS-E-HARD-0006 & EC=05001002 & Module error (RQ13 Link Invalid Interrupt) & RQ13 link status invalid & - & - & Hardware replacement \\
\hline 32 & \%CPMS-E-HARD-0006 & EC=05001003 & Module error (RQI3 Module Invalid Interrupt) & RQI3 module status invalid & - & - & Hardware replacement \\
\hline 33 & \%CPMS-E-HARD-0006 & EC=07D00001 & Module error (INVALID EXCEPTION) & Invalid exception generated & - & ON & Hardware replacement \\
\hline 34 & \%CPMS-E-HARD-0006 & EC=07D00010 & Module error (INVALID MAIN/SUB SWITCH SETTING) & Main-module/submodule setting error & - & ON & Correct the mainmodule/submodule switch setting. \\
\hline 35 & \%CPMS-E-HARD-0006 & EC=07D00011 & Module error (INVALID MAC ADDRESS) & MAC address error & - & ON & Hardware replacement \\
\hline 36 & \%CPMS-E-HARD-0006 & EC=07D00012 & Module error (MAIN/SUB SWITCH SETTING DUPLICATION) & Main-module/submodule setting duplicated & Blinking & ON & Correct the mainmodule/submodule switch setting. \\
\hline 37 & \%CPMS-E-HARD-0006 & EC=07D00013 & Module error (ETHERNET LSI CHECK ERROR) & LANCE diagnosis error & - & ON & Hardware replacement \\
\hline 38 & \%CPMS-E-HARD-0006 & EC=07D00014 & Module error (SDRAM CHECK ERROR) & SDRAM initialization error & - & ON & Hardware replacement \\
\hline 39 & \%CPMS-E-HARD-0006 & EC=07D00015 & Module error (OS-ROM CHECKSUM
ERROR) & ROM checksum error, CPMSrelated & - & ON & Hardware replacement \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Error log title & Error code & Error message & Brief description & ALARM LED & \[
\begin{aligned}
& \text { ERR } \\
& \text { LED }
\end{aligned}
\] & Required action \\
\hline 40 & \%CPMS-E-HARD-0006 & EC=07D00016 & Module error (CAN NOT MOUNTING WITH LQE520 MODULE) & LQE720 and LQE520 combination mounting error & - & ON & The model LQE720 module cannot be mounted along with a model LQE520 module on the same mount base. Remove the model LQE520 module. \\
\hline 41 & \%CPMS-E-HARD-0006 & EC=07D00018 & Module error (TASK-ROM CHECKSUM ERROR) & ROM checksum error, communication task-related & - & ON & Hardware replacement \\
\hline 42 & \%CPMS-W-HARD-0006 & EC=07D01003 & Module error (THE VERSION OF CMU MODULE IS OLD) & Model LQE720 module is mounted along with the CMU module not supporting it. & ON & - & Replace the CMU module with its version supporting the model LQE720 module. \\
\hline 43 & \%CPMS-W-HARD-0006 & EC=0D010000 & Module error (Memory Alarm) & Memory 1-bit error (solid) & - & - & Hardware replacement \\
\hline 44 & \%CPMS-E-HARD-0006 & EC=0D330000 & Module error (Hardware WDT timeout) & Hardware WDT timeout & - & - & Hardware replacement \\
\hline 45 & \%CPMS-E-HARD-0006 & EC=0D340000 & Module error (Software WDT Timeout) & Software WDT Timeout & - & - & Hardware replacement \\
\hline 46 & \%CPMS-F-HARD-0009 & EC=0D810000 & System down (BPU Error) & BPU error & - & ON & Hardware replacement \\
\hline 47 & \%CPMS-F-HARD-0009 & EC=03820000 & System down (Memory Error) & Memory error & - & ON & Hardware replacement \\
\hline 48 & \%CPMS-F-HARD-0009 & EC=038A0000 & System down (Memory Access Error) & Memory access error & - & ON & Hardware replacement \\
\hline 49 & \%CPMS-F-HARD-0009 & EC=038B0000 & System down (Internal Bus Parity) & Internal-bus parity error & - & ON & Hardware replacement \\
\hline 50 & \%CPMS-F-HARD-0009 & EC=038C0000 & System down (System Bus Parity) & System-bus parity error & - & ON & Hardware replacement \\
\hline 51 & \%CPMS-F-HARD-0009 & EC=038F0000 & System down (Undefined Machine Check) & Undefined-machine check error & - & ON & Hardware replacement \\
\hline 52 & \%CPMS-F-CPMS-0009 & EC=03620000 & System down (Invalid Data Access) & Data access error & - & ON & Hardware replacement \\
\hline 53 & \%CPMS-F-CPMS-0009 & EC=03660000 & System down (Data Access Protection) & Data access protection error & - & ON & Hardware replacement \\
\hline 54 & \%CPMS-F-CPMS-0009 & EC=03600000 & System down (Data Page Fault) & Data access page fault & - & ON & Hardware replacement \\
\hline 55 & \%CPMS-F-CPMS-0009 & EC=03420000 & System down (Invalid Inst. Access) & Instruction access error & - & ON & Hardware replacement \\
\hline 56 & \%CPMS-F-CPMS-0009 & EC=03460000 & System down (Inst. Access Protection) & Instruction access protection error & - & ON & Hardware replacement \\
\hline 57 & \%CPMS-F-CPMS-0009 & EC=03400000 & System down (Instruction Page Fault) & Instruction access page fault & - & ON & Hardware replacement \\
\hline 58 & \%CPMS-F-CPMS-0009 & EC=03030000 & System down (Inst. Alignment Error) & Instruction alignment error & - & ON & Hardware replacement \\
\hline 59 & \%CPMS-F-CPMS-0009 & EC=03040000 & System down (Illegal Instruction) & Privileged instruction error & - & ON & Hardware replacement \\
\hline 60 & \%CPMS-F-CPMS-0009 & EC=03380000 & System down (FP Unavailable) & Floating-point unavailability exception & - & ON & Hardware replacement \\
\hline 61 & \%CPMS-F-CPMS-0009 & EC=03390000 & System down (FP System down) & Floating-point arithmetic error & - & ON & Hardware replacement \\
\hline 62 & \%CPMS-F-CPMS-0009 & EC=03470000 & System down (Data Alignment Error) & Data alignment error & - & ON & Hardware replacement \\
\hline 63 & \%CPMS-F-CPMS-0009 & EC=030F0000 & System down (Illegal Exception) & Illegal Exception & - & ON & Hardware replacement \\
\hline 64 & \%CPMS-F-CPMS-0009 & EC=05700000 & System down (System Error) & System down (System error) & - & ON & Hardware replacement \\
\hline 65 & \%CPMS-F-CPMS-000A & EC=05800000 & System down (Kernel Trap) & System down (Kernel trap) & - & ON & Hardware replacement \\
\hline 66 & \%LNET-W-HARD-004 & EC=07801308 & I/O error (SEND_TIMEOUT) & Transmission timeout error & - & - & Error recovery done automatically \\
\hline 67 & \%LNET-E-HARD-004 & EC=07801308 & I/O error (SEND_TIMEOUT) & Transmission timeout error & - & ON & If error recovery is not achievable by turning off the power to the model LQE720 module and back on again, replace the module. \\
\hline 68 & \%LNET-W-HARD-004 & \(\mathrm{EC}=0780130 \mathrm{~A}\) & I/O error (RESET_ERROR) & Hardware resetting error & - & - & Error recovery done automatically \\
\hline 69 & \%LNET-E-HARD-004 & \(\mathrm{EC}=0780130 \mathrm{~A}\) & I/O error (RESET_ERROR) & Hardware resetting error & - & ON & If error recovery is not achievable by turning off the power to the model LQE720 module and back on again, replace the module. \\
\hline 70 & \%LNET-W-HARD-004 & EC=0780130E & I/O error (MEMORY) & Memory error & - & - & Error recovery done automatically \\
\hline 71 & \%LNET-E-HARD-004 & EC=0780130E & I/O error (MEMORY) & Memory error & - & ON & If error recovery is not achievable by turning off the power to the model LQE720 module and back on again, replace the module. \\
\hline 72 & \%LNET-W-HARD-004 & EC=07801310 & I/O error (LOSS) & Carrier loss error & - & - & Check the communication path.
\[
(* 1)
\] \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Error log title & Error code & Error message & Brief description & \[
\begin{array}{|c|}
\hline \text { ALARM } \\
\text { LED }
\end{array}
\] & \[
\begin{aligned}
& \text { ERR } \\
& \text { LED }
\end{aligned}
\] & Required action \\
\hline 73 & \%LNET-W-HARD-004 & EC=07801311 & I/O error (RETRY) & Retry error & - & - & Check the communication path (*3) \\
\hline 74 & \%LNET-W-HARD-004 & EC=07801312 & I/O error (LATE) & Late collision error & - & - & Check the communication path (*5) \\
\hline 75 & \%LNET-W-HARD-004 & \(\mathrm{EC}=07801351\) & I/O error (TX_ABORT) & Transmission aborted & - & - & Check the communication path \\
\hline 76 & \%LNET-W-HARD-004 & \(\mathrm{EC}=07801353\) & I/O error (TX_DEFER) & Transmission error due to transmission delay & - & - & Check the communication path \\
\hline 77 & \%LNET-W-HARD-004 & EC=07801370 & I/O error (EC_PCI_ERROR) & PCI error detected by communication LSI device & - & - & Hardware replacement (*6) \\
\hline 78 & \%LNET-W-HARD-004 & EC=07801376 & I/O error (TX_DATA_UNDER) & Communication data FIFO underrun & - & - & \[
\begin{aligned}
& \begin{array}{l}
\text { Check the } \\
\text { communication path } \\
(* 6)
\end{array} \\
& \hline
\end{aligned}
\] \\
\hline 79 & \%LNET-W-HARD-004 & EC=07801375 & I/O error (RX_STAT_OVER) & Reception-status FIFO overrun & - & - & Check the communication line load. (*6) \\
\hline 80 & \%LNET-W-HARD-004 & EC=07801377 & I/O error (RX_DATA_OVER) & Receive-data FIFO overrun & - & - & Check the communication line load. (*7) \\
\hline 81 & \%LNET-E-HARD-004 & EC=07D01001 & \[
\begin{aligned}
& \text { I/O error } \\
& \text { (IP_ADDERSS_NOT_REGISTERED) }
\end{aligned}
\] & IP address not set yet & ON & - & Set an IP address. \\
\hline 82 & \%LNET-E-HARD-004 & EC=07801400 & I/O error (PCI_BUS_ERR) & PCI bus error & - & - & Hardware replacement \\
\hline 83 & \%LNET-E-HARD-004 & EC=07801505 & I/O error (INV_INTR) & Invalid interrupt generated from communication line & - & - & Hardware replacement \\
\hline 84 & \%LNET-E-SOFT-004 & \(\mathrm{EC}=07801508\) & I/O error (BUF_OVF) & OS-managed send/receive buffer overflowed & - & - & Check the communication line load. (*2) \\
\hline 85 & \%LNET-W-SOFT-004 & EC=0780150F & I/O error (SOCKET_OVF) & Socket table full & - & - & Check the user program. \\
\hline 86 & \%LNET-W-SOFT-004 & EC=07801510 & I/O error (IFCONFIG_UP) & Network interface initialization error & - & - & Check the settings. \\
\hline 87 & \%LNET-W-SOFT-004 & \(\mathrm{EC}=07801512\) & I/O error (IPADDR_DUPL) & IP address duplicated & \[
\begin{array}{|c|}
\hline \text { Blinking } \\
(* 4) \\
\hline
\end{array}
\] & - & Check the settings. (*4) \\
\hline
\end{tabular}
(*1) The listed error message is output once when an LSI carrier loss condition is detected 32 times successively. An LSI carrier loss condition occurs when data transmission is attempted in the OFF (link not established yet) condition of the LINK LED indicator. Therefore, an LSI carrier loss condition also occurs when upon completion of the startup of the CPU an application program running on the CPU has issued 32 or more transmission requests before the LINK LED indicator is turned on. In this case, the application program must be corrected so that it will issue transmission requests only after the LINK LED indicator is turned on.
(*2) This type of error occurs due to a buffer shortage in high-communication-load condition.
(*3) The listed error message is output once when this type of error occurs 32 times successively.
(*4) The IP address of the model LQE720 module is duplicated with the IP address of another computer. If an attempt is made to establish a connection over the communication line that the other computer is using with an already established connection, the ALARM LED indicator starts blinking.
(*5) The listed error message is output once when this type of error is detected eight times successively. If it is detected more than 16 times successively, the error message is output once when it is detected 256 times.
(*6) The listed error message is output once when this type of error is detected five times successively.
(*7) The listed error message is output once when this type of error is detected 10 times successively.

\subsection*{4.2.15 NCP-F (model LQE780-Z) error log info and required actions}

NCP-F-related errors are reported by presenting error messages in one of the formats shown under
"4.3 CMU Error Message Formats."
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Error log title & Error code & Error message & Brief description & Error classification & Error location & Required action \\
\hline 1 & \%LNET-E-HARD-0004 & EC=07017104 & I/O error (PROCESSOR DOWN) & Common illegal instruction & & Hardware & (*1) \\
\hline 2 & \%LNET-E-HARD-0004 & EC=07017106 & I/O error (PROCESSOR DOWN) & Slot illegal instruction, exception error & tio & & (*1) \\
\hline 3 & \%LNET-E-HARD-0004 & EC=07017109 & I/O error (PROCESSOR DOWN) & CPU address error & & & (*1) \\
\hline 4 & \%LNET-E-HARD-0004 & EC=0701710A & I/O error (PROCESSOR DOWN) & DMA address error & & & (*1) \\
\hline 5 & \%LNET-E-HARD-0004 & EC=0701710B & I/O error (PROCESSOR DOWN) & NMI interrupt error & & & (*1) \\
\hline 6 & \%LNET-E-HARD-0004 & EC=0701710C & I/O error (PROCESSOR DOWN) & User break generated & & & (*1) \\
\hline 7 & \%LNET-E-HARD-0004 & EC=07117140 & I/O error (PROCESSOR DOWN) & IRL1 interrupt generated (invalid interrupt generated 10 times successively) & & & (*1) \\
\hline 8 & \%LNET-E-HARD-0004 & EC=07117141 & I/O error (PROCESSOR DOWN) & IRL2/3 interrupt generated (invalid interrupt generated 10 times successively) & & & (*1) \\
\hline 9 & \%LNET-E-HARD-0004 & EC=07117142 & I/O error (PROCESSOR DOWN) & IRL4/5 interrupt generated (invalid interrupt generated 10 times successively) & & & (*1) \\
\hline 10 & \%LNET-E-HARD-0004 & EC=07117143 & I/O error (PROCESSOR DOWN) & IRL6/7 interrupt generated (invalid interrupt generated 10 times successively) & & & (*1) \\
\hline 11 & \%LNET-E-HARD-0004 & EC=07117144 & I/O error (PROCESSOR DOWN) & IRL8/9 interrupt generated (invalid interrupt generated 10 times successively) & & & (*1) \\
\hline 12 & \%LNET-E-HARD-0004 & EC=0701714A & I/O error (PROCESSOR DOWN) & FRT interrupt generated (invalid interrupt generated 10 times successively) & & & (*1) \\
\hline 13 & \%LNET-E-HARD-0004 & EC=07017145 & I/O error (PROCESSOR DOWN) & IRL10/11 interrupt generated & & & (*1) \\
\hline 14 & \%LNET-E-HARD-0004 & EC=07017146 & I/O error (PROCESSOR DOWN) & IRL12/13 interrupt generated & & & (*1) \\
\hline 15 & \%LNET-E-HARD-0004 & EC=07017147 & I/O error (PROCESSOR DOWN) & IRL14/15 interrupt generated & & & (*1) \\
\hline 16 & \%LNET-E-HARD-0004 & EC=0701714F & I/O error (PROCESSOR DOWN) & SCI interrupt generated & & & \({ }^{*}{ }^{*}\) 1) \\
\hline 17 & \%LNET-E-HARD-0004 & EC=070171FF & I/O error (PROCESSOR DOWN) & Exception other than the above generated & & & (*1) \\
\hline 18 & \%LNET-E-HARD-0004 & EC=07187101 & I/O error (PROCESSOR DOWN) & MPU register write-read-compare check error & BOOT diagnosis & & (*1) \\
\hline 19 & \%LNET-E-HARD-0004 & EC=07187102 & I/O error (PROCESSOR DOWN) & MPU operation check error & error & & (*1) \\
\hline 20 & \%LNET-E-HARD-0004 & EC=07187103 & I/O error (PROCESSOR DOWN) & FRAM read-read-compare check error & & & \(\left.{ }^{*} 1\right)\) \\
\hline 21 & \%LNET-E-HARD-0004 & EC=07187104 & I/O error (PROCESSOR DOWN) & FRAM checksum error & & & \(\left.{ }^{*} 1\right)\) \\
\hline 22 & \%LNET-E-HARD-0004 & EC=07187105 & I/O error (PROCESSOR DOWN) & LS write-read-compare check error & & & \({ }^{*} 1{ }^{\text {(}}\) \\
\hline 23 & \%LNET-E-HARD-0004 & EC=07187106 & I/O error (PROCESSOR DOWN) & HKP FRAM-to-LS copy error & & & (*1) \\
\hline 24 & \%LNET-E-HARD-0004 & EC=0718710B & I/O error (PROCESSOR DOWN) & Timer diagnostic-check error & & & (*1) \\
\hline 25 & \%LNET-E-HARD-0004 & EC=0718710E & I/O error (PROCESSOR DOWN) & DRAM diagnosis-time single-bit ECC error; detected two times & & & (*1) \\
\hline 26 & \%LNET-E-HARD-0004 & EC=0718710F & I/O error (PROCESSOR DOWN) & Incorrect MAC address detected & & & (*1) \\
\hline 27 & \%LNET-E-HARD-0004 & EC=0718711B & I/O error (PROCESSOR DOWN) & Timer diagnostic-check error, FRT timer-related & & & (*1) \\
\hline 28 & \%LNET-E-HARD-0004 & EC=0718712X & I/O error (PROCESSOR DOWN) & FDDI chipset diagnosis error (X: 0,1 ,
\[
2, \mathrm{~A}, \mathrm{~B}, \text { or } \mathrm{C})
\] & & & (*1) \\
\hline 29 & \%LNET-E-HARD-0004 & EC=07207101 & I/O error (PROCESSOR DOWN) & DRAM expansion area access error (NMI) & Internal error & & (*1) \\
\hline 30 & \%LNET-E-HARD-0004 & EC=07207102 & I/O error (PROCESSOR DOWN) & LS protected-area access error (NMI) & & & (*1) \\
\hline 31 & \%LNET-E-HARD-0004 & EC=07207104 & I/O error (PROCESSOR DOWN) & WDT error (NMI) & & & (*1) \\
\hline 32 & \%LNET-E-HARD-0004 & EC=07207105 & I/O error (PROCESSOR DOWN) & POP signal abnormality detected & & & \(\left.{ }^{*} 1\right)\) \\
\hline 33 & \%LNET-E-HARD-0004 & EC=07217101 & I/O error (PROCESSOR DOWN) & DRAM ECC-uncorrectable error
(IRL13) & & & (*1) \\
\hline 34 & \%LNET-E-HARD-0004 & EC=07217111 & I/O error (PROCESSOR DOWN) & LS parity error (IRL13) & & & (*1) \\
\hline 35 & \%LNET-E-HARD-0004 & EC=07217121 & I/O error (PROCESSOR DOWN) & \begin{tabular}{l}
\(\begin{array}{l}\text { Buffer memory read parity error } \\
\text { (IRL13) }\end{array}\) \\
\hline
\end{tabular} & & & (*1) \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Error log title & Error code & Error message & Brief description & Error classification & Error location & Required action \\
\hline 36 & \%LNET-E-HARD-0004 & EC=07217131 & I/O error (PROCESSOR DOWN) & M-bus timeout error (IRL13) & Internal error & Hardware & (*1) \\
\hline 37 & \%LNET-E-HARD-0004 & EC=07217141 & I/O error (PROCESSOR DOWN) & F-bus timeout error (IRL13) & & & (*1) \\
\hline 38 & \%LNET-E-HARD-0004 & EC=07217151 & I/O error (PROCESSOR DOWN) & P-bus timeout error (IRL13) & & & (*1) \\
\hline 39 & \%LNET-E-HARD-0004 & EC=07217161 & I/O error (PROCESSOR DOWN) & P-bus target abort received (IRL13) & & & (*1) \\
\hline 40 & \%LNET-E-HARD-0004 & EC=07217171 & I/O error (PROCESSOR DOWN) & P-bus parity error (IRL13) & & & (*1) \\
\hline 41 & \%LNET-E-HARD-0004 & EC=07217181 & I/O error (PROCESSOR DOWN) & P-bus access retry count limit exceeded (IRL13) & & & \(\left.{ }^{*} 1\right)\) \\
\hline 42 & \%LNET-E-HARD-0004 & EC=07227201 & I/O error (PROCESSOR DOWN) & Error injection command error (error injection command failed to generate an error) & & & (*1) \\
\hline 43 & \%LNET-E-HARD-0004 & EC=07837202 & I/O error (R_DMAP_ERR) & DMA-P transfer failed (DMA-P access to the routing report table failed) & & & Resetting (*1) \\
\hline 44 & \%LNET-E-HARD-0004 & EC=07837203 & I/O error (DMAP_ERR) & DMA-P transfer failed (between MSDRAM locations during command processing) & & & Resetting (*1) \\
\hline 45 & \%LNET-W-HARD-0004 & EC=07837203 & I/O error (DMAP_ERR) & DMA-P transfer failed (between MSDRAM locations during command processing) & & & - \\
\hline 46 & \%LNET-E-HARD-0004 & EC=072f7201 & I/O error (SOFT TIMEOUT) & Response-to-command-initiationrequest timeout detected & OS-detected error & & (*1) \\
\hline 47 & \%LNET-E-HARD-0004 & EC=07C87201 & I/O error (CMD ILG) & Undefined command received & Softw & r handling in & (*1) \\
\hline 48 & \%LNET-E-SOFT-0004 & EC=07C87202 & I/O error (COMMAND STS) & Erroneous command-issuing procedure used & error & face & \begin{tabular}{|l|}
\hline Program correction \\
\((* 2)\) \\
\hline
\end{tabular} \\
\hline 49 & \%LNET-E-SOFT-0004 & EC=07C87203 & I/O error (PARA ILG) & Parameter error & & & Program correction
\((* 2)\)
\[
\left({ }^{*} 2\right)
\] \\
\hline 50 & \%LNET-E-SOFT-0004 & EC=07C87204 & I/O error (IF BUSY) & Interface block busy & & & Program correction
\[
(* 2)
\] \\
\hline 51 & \%LNET-E-HARD-0004 & EC=07C87207 & I/O error (COM BUSY) & Multiple command initiation attempted & & & (*1) \\
\hline 52 & \%LNET-E-SOFT-0004 & EC=07C87208 & I/O error (PORT ILG) & Use of specified port no. prohibited; it is an SETIPA-dedicated port. & & & \[
\begin{array}{|l|}
\hline \text { Program correction } \\
\left({ }^{*} 2\right) \\
\hline
\end{array}
\] \\
\hline 53 & \%LNET-W-SOFT-0004 & EC=07C87209 & I/O error (ROUTE BUF FULL) & Routing reporting was unachievable due to MS routing report buffer full. & & & \[
\begin{array}{|l}
\text { Program correction } \\
(* 2)
\end{array}
\] \\
\hline 54 & \%LNET-E-HARD-0004 & EC=07C8720C & I/O error (SYSBUSINTILG) & Illegal system bus interrupt detected & & & (*1) \\
\hline 55 & \%LNET-E-HARD-0004 & EC=07C8720D & I/O error (NO LOGSAVE) & Individual-module stoppage requested without issuing a LOGSAVE command & & & (*1) \\
\hline 56 & \%LNET-E-SOFT-0004 & EC=07C97204 & I/O error (NO RESOURCE) & TCP/IP resource shortage detected & & & \begin{tabular}{|l|}
\hline \(\begin{array}{l}\text { Program correction } \\
(* 2)\end{array}\) \\
\hline Progr
\end{tabular} \\
\hline 57 & \%LNET-E-SOFT-0004 & EC=07C97205 & I/O error (ADDR IN USE) & Double-socket error & & & \begin{tabular}{|l|}
\hline Program correction \\
\((* 2)\) \\
\hline
\end{tabular} \\
\hline 58 & \%LNET-E-HARD-0004 & EC=07C97206 & I/O error (SOCKET ILG) & Illegal socket detected & & & \\
\hline 59 & \%LNET-E-HARD-0004 & EC=07C97207 & I/O error (SEND_PENDING) & Transmission in pending state & & & (*1) \\
\hline 60 & \%LNET-E-HARD-0004 & EC=07C9720A & I/O error (DEST UNREACH) & Destination unreachable & & & (*1) \\
\hline 61 & \%LNET-E-HARD-0004 & EC=07C9720B & I/O error (RECV PENDING) & Reception in pending state & & & \({ }^{*}{ }^{(1)}\) \\
\hline 62 & \%LNET-W-HARD-0004 & EC=07C9720C & I/O error (SHUTDOWN) & Already closed or shut down & & & (*1) \\
\hline 63 & \%LNET-E-HARD-0004 & EC=07C9720F & I/O error (ADR_ILG) & Illegal address detected & & & \(\left.{ }^{*} 1{ }^{(}\right)\) \\
\hline 64 & \%LNET-E-HARD-0004 & EC=07C97210 & I/O error (ACCEPT_PENDING) & Acceptance in pending state & & & \({ }^{*} 1{ }^{\text {a }}\) \\
\hline 65 & \%LNET-E-HARD-0004 & EC=07CF7102 & I/O error (SOFT_IF_ILG) & C_USE register's ON condition detected in command initiation; detected by OS & & & (*1) \\
\hline 66 & \%LNET-E-HARD-0004 & EC=07CF7103 & I/O error (SOFT_IF_ILG) & Inappropriate response to a requesting command; detected by OS & & & (*1) \\
\hline 67 & \%LNET-E-HARD-0004 & EC=07CF7104 & I/O error (SOFT_IF_ILG) & Illegal response detected in a pending state of processing; detected by OS & & & (*1) \\
\hline 68 & \%LNET-E-HARD-0004 & EC=07CF7105 & I/O error (SOFT_IF_ILG) & Invalid interrupt generated; detected by OS & & & (*1) \\
\hline 69 & \%LNET-E-HARD-0004 & EC=07CF7106 & I/O error (SOFT_IF_ILG) & Illegal response code or AI code received; detected by OS & & & \(\left.{ }^{*} 1\right)\) \\
\hline 70 & \%LNET-E-HARD-0004 & EC=07CF7107 & I/O error (SOFT_IF_ILG) & Response received from the I/F block in a "command not initiated yet" condition; detected by OS & & & (*1) \\
\hline 71 & \%LNET-E-SOFT-0004 & EC=07CF7108 & I/O error (BUF_OVF) & OS-managed send-/receive-buffer overflowed & & & Review the system design. (*2) (*3) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Error log title & Error code & Error message & Brief description & Error classification & Error location & Required action \\
\hline 72 & \%LNET-W-SOFT-0004 & EC=07CF7109 & I/O error (ECD_ENXIO) & OS-detected system abnormality -- no such card existent & \multirow[t]{18}{*}{Software interface error} & \multirow[t]{18}{*}{Error handling in interface} & Review the system design. (*2) \\
\hline 73 & \%LNET-W-SOFT-0004 & EC=07CF710A & I/O error (ADAPTER_TYPE) & OS-detected system abnormality --non-matching card type detected & & & Review the system design. (*2) \\
\hline 74 & \%LNET-E-HARD-0004 & EC=07CF710B & I/O error (HARD_ERR) & OS-detected card initialization error -hardware fault & & & (*1) \\
\hline 75 & \%LNET-E-HARD-0004 & EC=07CF710C & I/O error (INITIAL) & OS-detected card initialization error -hardware not initialized yet & & & (*1) \\
\hline 76 & \%LNET-W-SOFT-0004 & EC=07CF710D & I/O error (STATION_NUM) & OS-detected system abnormality, station-related & & & Review the system design. (*2) \\
\hline 77 & \%LNET-E-HARD-0004 & EC=07CF710E & I/O error (STATUS) & OS-detected card initialization error -hardware status abnormal & & & (*1) \\
\hline 78 & \%LNET-W-SOFT-0004 & EC=07CF710F & I/O error (SOCKET_OVF) & Socket table full & & & Review the system design. (*2) \\
\hline 79 & \%LNET-W-SOFT-0004 & EC=07CF71E0 & I/O error (IPROUT_WARN) & Packet forwarding failed & & & Review the system design. (*2) \\
\hline 80 & \%LNET-W-SOFT-0004 & EC=07CF71E1 & I/O error (IPROUT_WARN) & Packet receive-buffer reset & & & Review the system design. (*2) \\
\hline 81 & \%LNET-W-SOFT-0004 & EC=07CF71E2 & I/O error (IPROUT_WARN) & Packet length exceeded the set limit & & & Review the system design. (*2) \\
\hline 82 & \%LNET-W-SOFT-0004 & EC=07CF71E3 & I/O error (IPROUT_WARN) & Packet-forwarding destination not supported by routing function & & & Review the system design. (*2) \\
\hline 83 & \%LNET-W-SOFT-0004 & EC=07CF71E4 & I/O error (IPROUT_WARN) & Response detected after timeout handling was finished. & & & Review the system design. (*2) \\
\hline 84 & \%LNET-W-SOFT-0004 & EC=07CF71E5 & I/O error (IPROUT_WARN) & IP routing information setting failed & & & Review the system design. (*2) \\
\hline 85 & \%LNET-W-SOFT-0004 & EC=07CF71E6 & I/O error (IPROUT_WARN) & Interface control block could not be obtained. & & & Review the system design. (*2) \\
\hline 86 & \%LNET-E-SOFT-0004 & EC=07CF72E0 & I/O error (IPROUT_ERR) & Packet transmission timed out & & & Restart the system.
\[
(* 1)
\] \\
\hline 87 & \%LNET-E-SOFT-0004 & EC=07CF72E1 & I/O error (IPROUT_ERR) & IP routing information overflowed & & & Restart the system.
\[
\left({ }^{*} 1\right)
\] \\
\hline 88 & \%LNET-E-SOFT-0004 & EC=07CF72E2 & I/O error (IPROUT_ERR) & An attempt made to use in a command an IP address that requires the use of routing function. & & & Restart the system. (*1) \\
\hline 89 & \%LNET-E-SOFT-0004 & EC=07CF72E3 & I/O error (IPROUT_ERR) & Packet forwarding resulted in a parameter error. & & & Restart the system. (*1) \\
\hline 90 & \%LNET-W-HARD-0004 & \(\mathrm{EC}=07317201\) & I/O error (ISOLATE2) & Transmission unachievable due to the ring in Ring_Non_op state (including ISOLATE state) & \multirow[t]{5}{*}{Channel error} & \multirow[t]{10}{*}{Error handling in communication line} & Re-issue it after the node's participation in the ring. (*1) \\
\hline 91 & \%LNET-E-SOFT-0004 & EC=07317204 & I/O error (SEND_TO) & Transmission timed out & & & Correct the destination station's program. (*2) \\
\hline 92 & \%LNET-E-HARD-0004 & \(\mathrm{EC}=07317205\) & I/O error (FDDI_LSI_ERR) & FDDI control LSI device failed & & & Restart the system.
\[
(* 1)
\] \\
\hline 93 & \%LNET-E-HARD-0004 & \(\mathrm{EC}=07317206\) & I/O error (DMA_B_ERR) & DMA-B failed & & & Restart the system.
\[
(* 1)
\] \\
\hline 94 & \%LNET-E-HARD-0004 & \(\mathrm{EC}=07327201\) & I/O error (LOOP_TST_ERR) & Loopback test error detected (in tst_chn command) & & & Restart the system.
\[
(* 1)
\] \\
\hline 95 & \%LNET-E-SOFT-0004 & \(\mathrm{EC}=07517201\) & I/O error (SEND_AREA_DUPL) & An overlap detected between this NCP's cyclic transmission area and another NCP's transmission area. & Area overlap & & Correct the program. (*2) \\
\hline 96 & \%LNET-W-HARD-0004 & \(\mathrm{EC}=07527201\) & I/O error (TTRG) & A trace code found identical to a trace trap code & Trace trigger & & - \\
\hline 97 & \%LNET-I-HARD-0004 & \(\mathrm{EC}=07537211\) & I/O error (ISOLATE) & ISOLATED condition detected & \multirow[t]{3}{*}{Network configuration change} & & Connect the transmission path properly. (*1) \\
\hline 98 & \%LNET-I-HARD-0004 & \(\mathrm{EC}=07537213\) & I/O error (WRAP_A_AI) & WRAP-A condition detected (Asystem transmission path looped back) & & & Connect the transmission path properly. (*1) \\
\hline 99 & \%LNET-I-HARD-0004 & \(\mathrm{EC}=07537214\) & I/O error (WRAP_B_AI) & WRAP-B condition detected (Bsystem transmission path looped back) & & & Connect the transmission path properly. (*1) \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Error log title & Error code & Error message & Brief description & Error classification & Error location & Required action \\
\hline 100 & \%LNET-I-HARD-0004 & EC=07537216 & I/O error (THRU_AI) & THRU condition detected & & andling in & (Error recovery) \\
\hline 101 & \%LNET-I-HARD-0004 & \(\mathrm{EC}=07537218\) & I/O error (ISOLATE(LE)) & ISOLATE condition caused by a transmission exceeding the link rate & configuration change & communication line & Connect the transmission path properly. (*1) \\
\hline 102 & \%LNET-I-HARD-0004 & EC=07537219 & I/O error (WRAP_A_AI(LE)) & WRAP-A condition caused by a transmission exceeding the link rate & & & Connect the transmission path properly. (*1) \\
\hline 103 & \%LNET-I-HARD-0004 & \(\mathrm{EC}=0753721 \mathrm{~A}\) & I/O error (WRAP_B_AI(LE)) & WRAP-B condition caused by a transmission exceeding the link rate & & & Connect the transmission path properly. (*1) \\
\hline 104 & \%LNET-I-HARD-0004 & EC=07537221 & I/O error (UPER_ST_CHNG) & Upstream neighboring station changed & & & (*1) \\
\hline 105 & \%LNET-I-HARD-0004 & \(\mathrm{EC}=07537222\) & I/O error (LOWR_ST_CHNG) & Downstream neighboring station changed & & & (*1) \\
\hline 106 & \%LNET-W-HARD-0004 & EC=07537231 & I/O error (ERR_FRAM_OVR) & Condition change made from "below error frame count" to "above error frame count" & Transmission path error (warning) & & Connect the transmission path properly. (*1) \\
\hline 107 & \%LNET-I-HARD-0004 & EC=07537232 & I/O error (ERR_FRAM_NON) & Condition change made from "above error frame count" to "below error frame count"; this is a normal condition. & & & (Error recovery) \\
\hline 108 & \%LNET-W-HARD-0004 & EC=07537241 & I/O error (LINK_ERR_OV(A)) & Condition change made from "below link error ratio" to "above link error ratio" in A-port & & & Connect the transmission path properly. (*1) \\
\hline 109 & \%LNET-I-HARD-0004 & EC=07537242 & I/O error (LINK_ERR_NO(A)) & Condition change made from "above link error ratio" to "below link error ratio" in A-port; this is a normal condition. & & & (Error recovery) \\
\hline 110 & \%LNET-W-HARD-0004 & EC=07537243 & I/O error (LINK_ERR_OV(B)) & Condition change made from "below link error ratio" to "above link error ratio" in B-port & & & Connect the transmission path properly. (*1) \\
\hline 111 & \%LNET-I-HARD-0004 & EC=07537244 & I/O error (LINK_ERR_NO(B)) & Condition change made from "above link error ratio" to "below link error ratio" in B-port; this is a normal condition. & & & (Error recovery) \\
\hline 112 & \%LNET-E-HARD-0004 & EC=07537251 & I/O error (LINK_EVENT(A)) & Connection error -- a prohibited connection attempted in A-port of NCP-F & & & Connect the transmission path properly. (*1) \\
\hline 113 & \%LNET-E-HARD-0004 & EC=07537252 & I/O error (LINK_EVENT(B)) & Connection error -- a prohibited connection attempted in B-port of NCP-F & & & Connect the transmission path properly. (*1) \\
\hline 114 & \%LNET-E-HARD-0004 & EC=07537261 & I/O error (MAC_ADR_ERR1) & Duplicated MAC address detected; automatically separated from the ring. & Duplicated address & & (*1) \\
\hline 115 & \%LNET-E-HARD-0004 & EC=07537262 & I/O error (MAC_ADR_ERR2) & Duplicated MAC address detected; logical separation from the ring was requested. & & & (*1) \\
\hline 116 & \%LNET-E-HARD-0004 & EC=07537263 & I/O error (MAC_ADR_ERR3) & Duplicated MAC address detected; My_Claim received. & & & (*1) \\
\hline 117 & \%LNET-E-HARD-0004 & EC=07537264 & I/O error (MAC_ADR_ERR4) & Duplicated MAC address detected & & & (*1) \\
\hline 118 & \%LNET-E-HARD-0004 & EC=07537265 & I/O error (ST_ADR_ERR) & Duplicated station address detected & & & Set the rotary switch correctly. (*1) \\
\hline 119 & \%LNET-E-HARD-0004 & EC=07537271 & I/O error (FDDI_LSI_ERR1) & FDDI control LSI device abnormality detected; a bus test failed because the local station was in a failure condition and isolated. & FDDI control LSI device abnormality & & (*1) \\
\hline 120 & \%LNET-E-HARD-0004 & EC=07537272 & I/O error (FDDI_LSI_ERR2) & FDDI control LSI device abnormality detected; \(\mathrm{FM}+\) is abnormal. & & & (*1) \\
\hline 121 & \%LNET-E-HARD-0004 & \(\mathrm{EC}=07537273\) & I/O error (FDDI_LSI_ERR3) & FDDI control LSI device abnormality detected; PLC-S is abnormal. & & & (*1) \\
\hline 122 & \%LNET-E-HARD-0004 & EC=07537281 & I/O error (TOKEN_DUAL) & A double-token condition detected in the transmission path & & & (*1) \\
\hline 123 & \%LNET-E-HARD-0004 & EC=07537282 & I/O error (ILG_TOKEN) & Restricted token mode detected in the transmission path & & & (*1) \\
\hline 124 & \%LNET-W-HARD-0004 & EC=07537283 & I/O error (BUF_MEM_BUSY) & Receive-buffer in buffer memory was busy. & \begin{tabular}{|l|}
\hline \begin{tabular}{l}
Transmission \\
path \\
abnormality
\end{tabular} \\
\hline
\end{tabular} & & Check the load on the transmission path. \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Error log title & Error code & Error message & Brief description & Error classification & Error location & Required action \\
\hline 125 & \%LNET-W-HARD-0004 & EC=07417201 & I/O error (ISOLATE2) & Transmission unachievable due to the ring in Ring_Non_op condition (including ISOLATE condition) & Network configuration change & \multirow[t]{10}{*}{Error handling in communication line} & Re-issue it after the node's participation in the ring. (*1) \\
\hline 126 & \%LNET-E-HARD-0004 & EC=07417202 & I/O error (SEND_ABORT) & Transmission aborted due to MAC resetting or ring recovery & FDDI control LSI device abnormality & & Restart the system.
\[
(* 1)
\] \\
\hline 127 & \%LNET-E-HARD-0004 & EC=07417203 & I/O error (SEND_ABORT2) & Transmission aborted and resetting made due to a parity error in sendbuffer memory (*1) & & & Restart the system.
\[
\left({ }^{*} 1\right)
\] \\
\hline 128 & \%LNET-E-SOFT-0004 & EC=07417204 & I/O error (SEND_TO) & Transmission timed out & & & Correct the destination station's program. (*2) \\
\hline 129 & \%LNET-E-HARD-0004 & EC=07537291 & I/O error (CYC_BLK_ILG) & Cyclic-block no. error detected in cyclic reception & Connection error & & Connect the transmission path properly. (*1) \\
\hline 130 & \%LNET-E-HARD-0004 & EC=075372A1 & I/O error (DRAM_ERR1) & Single-bit error detected in DRAM & \multirow[t]{2}{*}{Module LSI device abnormality} & & (*1) \\
\hline 131 & \%LNET-E-HARD-0004 & \(\mathrm{EC}=075372 \mathrm{~A} 2\) & I/O error (DRAM_ERR2) & DMA-B transfer timed out in DRAM & & & (*1) \\
\hline 132 & \%LNET-W-SOFT-0004 & \(\mathrm{EC}=07557201\) & I/O error (RECV_BUF_BUSY) & UDP frame receive-buffer busy & Receivebuffer error & & Correct the program. (*2) \\
\hline 133 & \%LNET-E-HARD-0004 & EC=07567201 & I/O error (RESP_TO) & Response-monitoring timeout error (in tst_wio, ring_ctl, or get_mibfddi) & \multirow[t]{2}{*}{Destination station error} & & (*1) \\
\hline 134 & \%LNET-E-HARD-0004 & EC=07567202 & I/O error (DATA_CMP_ERR) & Send-/receive-data compare-check error (in tst_wio) & & & (*1) \\
\hline 135 & \%LNET-E-HARD-0004 & EC=0718711C & I/O error (PROCESSOR DOWN) & FPGA diagnosis error or system-bus
read error & \multirow[t]{2}{*}{FPGA failure} & \multirow[t]{2}{*}{Hardware} & (*1) \\
\hline 136 & \%LNET-E-HARD-0004 & EC=0718711D & I/O error (PROCESSOR DOWN) & PCI configuration register setting not finished yet & & & (*1) \\
\hline
\end{tabular}
(*1) Carry out maintenance and recovery work by referring to the "MAINTENANCE MANUAL FOR \(\mu\) ENETWORK-100 (manual number CC-97012)."
(*2) Carry out maintenance work by referring to the "MAINTENANCE MANUAL FOR \(\mu \Sigma\) NETWORK-100 (manual number CC-97012)."
(*3) This type of error occurs due to a buffer shortage in high-communication-load condition.

\subsection*{4.2.16 LANCP (model LQE790-Z/795-Z) error log info and required actions}

LANCP-related errors are reported by presenting error messages in one of the formats shown under "4.3 CMU Error Message Formats."
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Error log title & Error code & Error message & Brief description & Error classification & Error location & Required action \\
\hline 1 & \%LNET-E-HARD-0004 & EC=07801308 & I/O error (SEND_TIMEOUT) & Transmission timeout error & \multirow[t]{6}{*}{LSI device error} & \multirow[t]{6}{*}{Hardware} & Hardware replacement \\
\hline 2 & \%LNET-E-HARD-0004 & EC=0780130A & I/O error (RESET_ERROR) & Hardware resetting error & & & Hardware replacement \\
\hline 3 & \%LNET-E-HARD-0004 & EC=0780130E & I/O error (MEMORY) & Memory error & & & Hardware replacement \\
\hline 4 & \%LNET-W-HARD-0004 & EC=07801308 & I/O error (SEND_TIMEOUT) & Transmission timeout error -- error recovery done automatically & & & - \\
\hline 5 & \%LNET-W-HARD-0004 & EC=0780130A & I/O error (RESET_ERROR) & Hardware resetting error -- error recovery done automatically & & & - \\
\hline 6 & \%LNET-W-HARD-0004 & \(\mathrm{EC}=0780130 \mathrm{E}\) & I/O error (MEMORY) & Memory error -- error recovery done automatically & & & - \\
\hline 7 & \%LNET-W-HARD-0004 & EC=07801310 & I/O error (LOSS) & Carrier loss error & \multirow[t]{3}{*}{Channel error} & \multirow[t]{3}{*}{Error handling in communication line} & Check the transmission path. (*1) \\
\hline 8 & \%LNET-W-HARD-0004 & EC=07801311 & I/O error (RETRY) & Retry error & & & Check the transmission path. \\
\hline 9 & \%LNET-W-HARD-0004 & \(\mathrm{EC}=07801312\) & I/O error (LATE) & Late-collision error & & & Check the transmission path. \\
\hline 10 & \%LNET-E-HARD-0004 & EC=07801400 & I/O error (PCI_BUS_ERR) & Built-in LANCE PCI bus error & \multirow[t]{4}{*}{Bus error, etc.} & \multirow[t]{4}{*}{Hardware} & Hardware replacement \\
\hline 11 & \%LNET-E-HARD-0004 & EC=07801600 & I/O error (LPCI_BUS_ERR) & LANCP internal-PCI bus error & & & Hardware replacement \\
\hline 12 & \%LNET-E-HARD-0004 & EC=07801601 & I/O error (R700_BUS_ERR) & LANCP R700 bus error & & & Hardware replacement \\
\hline 13 & \%LNET-E-HARD-0004 & EC=07801602 & I/O error (P3V_ERR) & Module error & & & Hardware replacement \\
\hline 14 & \%LNET-E-HARD-0004 & EC=07801505 & I/O error (INV_INTR) & Invalid interrupt generated; detected by OS & \multirow[t]{10}{*}{Software interface error} & \multirow[t]{10}{*}{Error handling in interface} & Hardware replacement \\
\hline 15 & \%LNET-E-SOFT-0004 & EC=07801508 & I/O error (BUF_OVF) & OS-managed send-/receive-buffer overflowed & & & Review the system design. (*2) \\
\hline 16 & \%LNET-W-SOFT-0004 & EC=07801509 & I/O error (ECD_ENXIO) & OS-detected system abnormality -- no
such card existent such card existent & & & Review the system construction. \\
\hline 17 & \%LNET-W-SOFT-0004 & EC=0780150A & I/O error (ADAPTER_TYPE) & OS-detected system abnormality -- nonmatching card type detected & & & Review the system construction. \\
\hline 18 & \%LNET-E-HARD-0004 & EC=0780150C & I/O error (INITIAL) & OS-detected LANCP hardware initialization error & & & Hardware replacement \\
\hline 19 & \%LNET-W-SOFT-0004 & EC=0780150D & I/O error (STATION_NUM) & OS-detected system abnormality -- nonmatching station number & & & Review the system construction. \\
\hline 20 & \%LNET-W-SOFT-0004 & EC=0780150F & I/O error (SOCKET_OVF) & Socket table full; detected by OS & & & Review the system design. \\
\hline 21 & \%LNET-W-SOFT-0004 & \(\mathrm{EC}=07801510\) & I/O error (IFCONFIG_UP) & OS-detected initialization error & & & Review the system design. \\
\hline 22 & \%LNET-W-SOFT-0004 & EC=07801511 & I/O error (NETADDR_DUPL) & Duplicated network address; detected by OS & & & Review the system construction. (*3) \\
\hline 23 & \%LNET-W-SOFT-0004 & EC=07801512 & I/O error (IPADDR_DUPL) & Duplicated IP address; detected by OS & & & Review the system construction. (*4) \\
\hline
\end{tabular}
(*1) The listed error message is output once when an LSI carrier loss condition is detected 32 times successively. With the built-in LANCE and LNC550 LANCP (10BASE-T) modules, an LSI carrier loss condition occurs when data transmission is attempted in the OFF (link not established yet) condition of the LINK LED indicator. Therefore, an LSI carrier loss condition also occurs when upon completion of the startup of the CPU an application program running on the CPU has issued 32 or more transmission requests before the LINK LED indicator is turned on. In this case, the application program must be corrected so that it will issue transmission requests only after the LINK LED indicator is turned on.
(*2) This type of error occurs due to a buffer shortage in high-communication-load condition.
(*3) The network addresses of the built-in LANCE and LANCP module must be defined uniquely.
(*4) The IP address of the LANCP module is duplicated with the IP address of another computer.

\subsection*{4.3 CMU Error Message Formats}

CMU-related errors are reported in the following formats.

\subsection*{4.3.1 Panic log error message formats}

Table 4-1 Panic Log Error Message Formats
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Format type } & Error message format \\
\hline System down -- system error & (1)+(2)+(3)+(4) \\
\hline System down -- built-in subroutine error & \((1)+(2)+(3)+(4)\) \\
\hline
\end{tabular}
(1) Error severity ID symbols
[F]: Fatal error
[FU]: Built-in subroutine error
(2) Error message

For details, see the information supplied under "4.2 Error Log Information and Required
Actions." If the error code displayed is not listed in any error message list, the error message displayed along with the error code is one of the default error messages listed below.

Table 4-2 Panic Log Default Error Messages
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Format type } & \multicolumn{1}{c|}{ Error message } \\
\hline System down -- system error & System down \\
\hline System down -- built-in subroutine error & System down \\
\hline
\end{tabular}
(3) Program counter
(4) Fault address

\section*{4 ERROR LOG INFORMATION}

\subsection*{4.3.2 Non-panic log error message formats}

Possible format elements -- form 1:
\(\frac{[*]}{(1)} \frac{* * * * * * *}{(2)} \frac{(\mathrm{UNO}=* *, \mathrm{DEV}=0 \mathrm{x} * * * * * * * *)}{(3)} \frac{(\mathrm{TN}=* * *)}{4} \frac{(\mathrm{SLOT}=* *)}{(5)}\)

Table 4-3 Non-Panic Log Error Message Formats
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Format type } & \multicolumn{1}{c|}{ Error message format } \\
\hline Program error & \((1)+(2)+(4)\) \\
\hline Macro parameter check error & \((1)+(2)+(4)\) \\
\hline I/O error & \((1)+(2)+(3)\) \\
\hline WDT timeout error & \((1)+(2)\) \\
\hline Module error & \((1)+(2)+(5)\) \\
\hline Kernel warning & \((1)+(2)+(4)\) \\
\hline Kernel information & \((1)+(2)+(4)\) \\
\hline System down -- kernel trap & \((1)+(2)\) \\
\hline System down -- built-in subroutine stoppage & \((1)+(2)\) \\
\hline ADT error & \((1)+(2)+(4)\) \\
\hline Memory error & \((1)+(2)+(4)\) \\
\hline System-bus error & \((1)+(2)+(5)\) \\
\hline Message frame error & \((1)+(2)\) \\
\hline Buffer status report & \((1)+(2)\) \\
\hline Socket error & \((1)+(2)\) \\
\hline
\end{tabular}
(1) Error severity ID symbols
[F]: Fatal error [W]: Warning
[E]: Error
[I]: Information
(2) Error message

For details, see the information supplied under "4.2 Error Log Information and Required Actions." If the error code displayed is not listed in any error message list, the error message displayed along with the error code is one of the default error messages listed in Table 4-4.

Table 4-4 Non-Panic Log Default Error Messages
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Format type } & \multicolumn{1}{c|}{ Error message } \\
\hline Program error & Program error \\
\hline Macro parameter check error & Macro parameter error \\
\hline I/O error & I/O error \\
\hline WDT timeout error & WDT timeout error \\
\hline Module error & Module Error \\
\hline Kernel warning & Kernel Warning \\
\hline Kernel information & Kernel Information \\
\hline System down -- kernel trap & System down \\
\hline System down -- built-in subroutine stoppage & System down \\
\hline ADT error & Program error \\
\hline Memory error & Memory error \\
\hline System-bus error & System Bus Error \\
\hline Message frame error & Message frame error \\
\hline Buffer status report & Buffer status \\
\hline Socket error & Socket error \\
\hline
\end{tabular}
(3) Unit number and device number

Unit number range: 1 to 24
Device number range: 0x00000000 to 0xFFFFFFFF
(4) Task number

Task number range: 1 to 300 (or 1 to 229 for user tasks)
(5) Slot number

Slot number range: 0 to 7

Possible format elements -- form 2:
Non-panic log error messages of form 2 are displayed in the following format:
```

%****_*-****-****
(1) (2) (3) (4)

```
(1) ID name of a system in which the error is detected

CPMS: CPMS (basic OS)
LNET: RCTLNET (network driver)
NX: NXACP (autonomous distributed platform)
MSxx: Middleware numbered xx , where xx is a 2-digit number in the range 01 to 16 .
USxx: Application software numbered xx , where xx is a 2-digit number in the range 01 to 16 .
(2) Error severity ID symbol

F: Fatal error
W: Warning
E: Error
?: Other kind of error
(3) Error location ID symbol

HARD: Hardware
CPMS: CPMS
SOFT: Software other than the CPMS
????: Other type of error
(4) Code

This code is a 4-digit hexadecimal number indicating a format type.

\subsection*{4.4 RPDP Error Log Display Guide}

\subsection*{4.4.1 Reading the error log}

This section serves as a short guide on how to read the content of the "Error Log Detail" window displayed by the svelog command of RPDP or by the S10V BASE SYSTEM. The following is an example of the "Error Log Detail" window displayed.

Figure 4-1 Example of a Displayed Error Log
- System ID name in which the error was detected

CPMS: CPMS (basic OS)
LNET: RCTLNET (network driver)
NX: NXACP (autonomous distributed platform)
MSxx: Middleware numbered xx , where xx is a 2-digit number in the range 01 to 16 . USxx: Application software numbered xx , where xx is a 2-digit number in the range 01 to 16 .
- Error message (listed under "4.2 Error Log Information and Required Actions")

Program error: An error that affects the normal execution of the program.
Macro parameter check error: A parameter error detected in a macro instruction of the OS.
WDT timeout error: An error generated by the watchdog timer.
I/O error: An error related to input/output operation.
Module error: Mainly a hardware error.
PI/O error: An error related to process input/output operation.
For details on the other types of errors, see the information supplied under "4.4.2 Types of error logs."
- Error severity ID symbol

F: Fatal Error
E: Error
W: Warning
I: Information
- Error location ID symbol

HARD: Hardware
CPMS: CPMS
SOFT: Software product other than CPMS
- Code

A code indicating a type of an error log.

\subsection*{4.4.2 Types of error logs}
(1) Types of OS error logs

The error logs maintained by the OS can be classified as shown below. For information on the error messages in these error logs, see the error message lists provided under "4.2 Error Log Information and Required Actions."

Table 4-5 Types of OS Error Logs
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Code & \multicolumn{1}{|c|}{ Log format name } & \multicolumn{1}{|c|}{ Error message } & \multicolumn{3}{|c|}{ Major error information } \\
\hline\(/ 0001\) & Program error & Program error (subtitle) & EC & TN & PC & FADR \\
\hline\(/ 0002\) & Macro parameter error & Macro parameter error & EC & TN & SVC & \\
\hline\(/ 0004\) & I/O error & I/O error (subtitle) & EC & UNO & DEV & \\
\hline\(/ 0005\) & WDT timeout error & WDT timeout error & EC & & & \\
\hline\(/ 0006\) & Module error & Module error (subtitle) & EC & SLOT & & \\
\hline\(/ 0007\) & Kernel warning & Kernel warning & Kernel Information & EC & & \\
\hline\(/ 0008\) & Kernel information & System down (subtitle) & EC & TN & PC & FADR \\
\hline\(/ 0009\) & System down -- system error & System down (Kernel trap) & EC & FILE & LINE & \\
\hline\(/ 000 \mathrm{~A}\) & System down -- kernel trap & ULSUB down (subtitle) & EC & NEST & POINT & ENTRY \\
\hline\(/ 000 B\) & \begin{tabular}{l}
System down -- built-in subroutine \\
error
\end{tabular} & System down (ULSUB stop) & EC & NEST & POINT & \\
\hline\(/ 000 \mathrm{C}\) & \begin{tabular}{l}
System down -- built-in subroutine \\
stoppage
\end{tabular} & \begin{tabular}{l}
Program error (Address Detect \\
Trap Error)
\end{tabular} & EC & TN & PC & \\
\hline\(/ 000 \mathrm{D}\) & ADT error & Memory error & System Bus error & EC & HERST & \\
\hline\(/ 000 \mathrm{E}\) & Memory error & System-bus error & HERST & & \\
\hline\(/ 000 \mathrm{~F}\) & SC & & \\
\hline
\end{tabular}

Each "(subtitle)" message portion above is a detail message reporting on the detected error.
Description of symbols:

EC: Error code
TN: Task number
SVC: Macro code
PC: Instruction address
FADR: Fault address
UNO: I/O unit number
DEV: Device number

SLOT: Slot number
FILE: File name
LINE: Line number
NEST: Nest
POINT: Point
ENTRY: Entry
HERST: Serious-error register
(2) Types of NXACP error logs

The table below is a list of all predefined types of NXACP error logs.

Table 4-6 Types of NXACP Error Logs
\begin{tabular}{|c|l|l|l|l|l|l|l|}
\hline Code & \multicolumn{1}{|c|}{ Log format name } & \multicolumn{1}{c|}{ Error message } & \multicolumn{4}{c|}{ Major error information } \\
\hline \(0 x 0102\) & Message frame error & Message frame error & DFN & PORTNO & NXHD & & \\
\hline \(0 x 0103\) & Buffer status report & Buffer status & DFN & SPEAK & RPEAK & CNT & \\
\hline \(0 x 0104\) & Socket error & Socket error & DFN & DADDR & DPORT & & \\
\hline \(0 x 0105\) & \begin{tabular}{l}
Transfer memory area \\
overlap error
\end{tabular} & \begin{tabular}{l}
Transfer memory \\
address error
\end{tabular} & DFN & TMID & CASENO & BLKNO & BLKCNT \\
\hline
\end{tabular}

Description of symbols:
DFN: Data field number
PORTNO: Port number
NXHD: NeXUS header
SPEAK: Send-buffer peak usage
RPEAK: Receive-buffer peak usage
CNT: The number of events that occurred.
DADDR: Destination IP address
DPORT: Destination port number
TMID: Transfer memory ID number
CASENO: Transmission case number
BLKNO: Transmission block number
BLKCNT: Transmission block count
SLOTNO: Slot number
UNO: Unit number
MCODE: Macro number
MERRNO: Error code from macro

\subsection*{4.4.3 Error log details and analysis}
(1) Program error

This type of error is reported when a fault in a program causes the program to access an abnormal address in memory or execute an illegal instruction. When analyzing this type of error, use the following two-step preliminary procedure:
- Determine the nature of the error from the error name and other information in the displayed error message. For the meaning of the error message, see Table 4-7, "Program Error Message Format," and Table 4-8, "Error Codes, Subtitles, and Their Meanings."
- Locate the cause of the error by referring to the register and stack information in the displayed error message.
The subsequent comprehensive analysis procedure is shown in Figure 4-2.

\section*{Table 4-7 Program Error Message Format}
```

%CPMS-E-S0FT-0001 SITE=xxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=xxxxxxxx Program error (subtitle)

TN	= $\mathrm{xx} \times \mathrm{xx} \mathrm{xXx}$	PC	Xxxxxx	EXPEV-XXXXXXXX	FADR =xxxxxxxx	R	$=\mathrm{xxxxxxx}$
P	= xxxxxxxx	SP	$=\mathrm{xxxxxxxx}$	GBR $=x x$	MACH = xxxxxxxx	MACL	= xxxxxxxx
R0	$=\mathrm{xxxxxxxx}$	R1	$=\mathrm{xxxxxxxx}$	R2 = xxxxxxxx	R3 = xxxxxxxx	R4	= xxxxxxxx
R5	$=\mathrm{xxxxxxxx}$	R6	$=\mathrm{xxxxxxxx}$	R7 = $x$ xxxx	R8	R9	X
R10	$=\mathrm{xxxxxxxx}$	R11	$=\mathrm{xxxxxxxx}$	R12 = xxxxxxxx	R13 = xxxxxxxx	R14	$=\mathrm{xxxxxx}$

R15 = xxxxxxxx FPSCR=xxxxxxxx FPUL = xxxxxxxx
FR0 =xx. xxxxxxExxx FR1 =xx. xxxxxxExxx FR2 =xx. xxxxxxExxx FR3 = xx. xxxxxxExxy
FR4 =xx. xxxxxxExxx FR5 =xx. xxxxxxExxx FR6 =xx. xxxxxxExxx FR7 = xx. xxxxxxExxx
FR8 =xx. xxxxxxExxx FR9 =xx. xxxxxxExxx FR10 =xx. xxxxxxExxy FR11 = xx. xxxxxxExxy
FR12 =xx. xxxxxxExxx FR13 = xx. xxxxxxExxx FR14 =xx. xxxxxxExxx FR15 = xx. xxxxxxExxx
XF0 =xx. xxxxxxExxx XF1 =xx. xxxxxxExxx XF2 =xx. xxxxxxExxx XF3 =xx. xxxxxxExxy
XF4 =xx. xxxxxxExxx XF5 =xx. xxxxxxExxx XF6 =xx. xxxxxxExxx XF7 =xx. xxxxxxExxx
XF8 =xx. xxxxxxExxx XF9 =xx. xxxxxxExxx XF10 =xx. xxxxxxExxx XF11 =xx. xxxxxxExxx
XF12 =xx. xxxxxxExxx XF13 =xx. xxxxxxExxx XF14 =xx. xxxxxxExxx XF15 =xx. xxxxxxExxx
DR0 =xx. xxxxxxExxx DR2 =xx. xxxxxxExxx DR4 =xx. xxxxxxExxx DR6 = xx. xxxxxxExxx
DR8 =xx. xxxxxxExxx DR10 =xx. xxxxxxExxx DR12 =xx. xxxxxxExxx DR14 =xx. xxxxxxExxx
XD0 =xx. xxxxxxExxx XD2 =xx. xxxxxxExxx XD4 =xx. xxxxxxExxx XD6 =xx. xxxxxxExxx
XD8 =xx. xxxxxxExxx XD10 =xx. xxxxxxExxx XD12 =xx. xxxxxxExxx XD14 =xx. xxxxxxExxx

```


```

PC = xxxxxxxx(____)
FADR=xxxxxxxx(
(____)
PR =xxxxxxxx(
_)

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Meaning } \\
\hline RC & Return code \\
\hline EC & Error code (see Table 4-8) \\
\hline TN & The task number of the task in which the error occurred. \\
\hline PC & The content of the program counter. \\
\hline EXPEV & \begin{tabular}{l}
The content of the exception code register, which is a 32-bit register and identifies the cause of data \\
access and alignment exceptions.
\end{tabular} \\
\hline FADR & Fault address \\
\hline SR & Status register \\
\hline PR & \begin{tabular}{l}
The content of the procedure register, which is used in calling a subroutine and stores the return address \\
to the calling routine.
\end{tabular} \\
\hline SP & The content of the stack pointer -- the register R15 is used as the stack pointer. \\
\hline GBR & \begin{tabular}{l}
The content of the global base register, which stores base addresses to be used in GBR-indirect \\
addressing with displacement and in indexed GBR-indirect addressing.
\end{tabular} \\
\hline MACH & \begin{tabular}{l}
The content of the MAC register high, which saves the accumulated value of a MAC (Multiply and \\
Accumulate) instruction or the result of a MAC or a MUL instruction. When the result of a MAC \\
operation is a 64-bit value, this register contains the upper 32-bit value.
\end{tabular} \\
\hline MACL & \begin{tabular}{l}
The content of the MAC register low, which serves the same purpose as MACH. When the result of a \\
MAC operation is a 64-bit value, this register contains the lower 32-bit value. When the result of a \\
MAC operation is a 32-bit value, it contains the entire 32-bit value.
\end{tabular} \\
\hline Rxx & The content of the general register numbered xx. \\
\hline FPSCR & The content of the floating-point status/control register. \\
\hline FPUL & \begin{tabular}{l}
The content of the floating-point communication register, a register via which data transfer is done \\
between general and floating-point registers.
\end{tabular} \\
\hline FRxx & \begin{tabular}{l}
The content of the 32-bit floating-point register numbered xx. When FPSCR.PR (19th bit of the bits \\
\(31 ~ t h r u ~ 0) ~=0, ~ t h e s e ~ r e g i s t e r s ~ c o n t a i n ~ v a l u e s ~ o f ~ F P R x x ~ B A N K 0 . ~ W h e n ~ F P S C R . P R ~=~ 1, ~ t h e y ~ c o n t a i n ~\)
\end{tabular} \\
values of FPRxx_BANK1.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Meaning } \\
\hline XFxx & \begin{tabular}{l}
The content of the 32-bit floating-point extension register numbered xx. \\
the bits 31 thru 0)=0, these registers contain values of FPRxx_BANK1. When FPSCR.PR (19th bit of \\
contain values of FPRxx_BANK0.
\end{tabular} \\
\hline DRxx & \begin{tabular}{l}
The content of the 64-bit floating-point register numbered xx. When FPSCR.PR (19th bit of the bits \\
31 thru 0) = 0, these registers contain values of FPRxx_BANK0. When FPSCR.PR = 1, they contain \\
values of FPRxx_BANK1.
\end{tabular} \\
\hline XDxx & \begin{tabular}{l}
The content of the 64-bit floating-point register numbered xx. When FPSCR.PR (19th bit of the bits \\
31 thru 0) = 0, these registers contain values of FPRxx_BANK1. When FPSCR.PR = 1, they contain \\
values of FPRxx_BANK0.
\end{tabular} \\
\hline INST & Instruction code \\
\hline PC & \begin{tabular}{l}
The content of the program counter. Information on the address value contained in the program \\
counter is presented, enclosed in parentheses. If the address value identifies a memory location in a \\
program, the following information is presented: \\
(name = program name type = program type [program component] raddr = relative address to the \\
beginning of the program)
\end{tabular} \\
\hline FADR & \begin{tabular}{l}
Fault address. Information on the fault address is presented, enclosed in parentheses. \\
\hline PR
\end{tabular} \begin{tabular}{l}
The content of the procedure register. Information on the address value contained in the procedure \\
register is presented, enclosed in parentheses. If the address value identifies a memory location in a \\
program, the following information is presented: \\
(name = program name type = program type [program component] raddr = relative address to the \\
beginning of the program)
\end{tabular} \\
\hline
\end{tabular}

Table 4-8 Error Codes, Subtitles, and Their Meanings (for Program Errors)
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Error code & Subtitle & Brief description & Meaning \\
\hline 1 & EC=03030000 & Inst. Alignment Error & Instruction alignment error & An instruction's operand was not aligned on word boundaries. \\
\hline 2 & EC=03040000 & Illegal Instruction & Illegal instruction error & An attempt was made to execute an illegal instruction. \\
\hline 3 & EC=03080000 & Privileged Instruction & Privileged instruction violation & A privileged instruction, an instruction that may be executed only in system mode, was executed. \\
\hline 4 & EC=03090000 & Illegal Breakpoint & Illegal-breakpoint exception error & An instruction causing a breakpoint exception was executed. \\
\hline 5 & EC=03390000 & FP Program Error & Floating-point arithmetic error & An error was encountered during the execution of a floating-point arithmetic instruction \\
\hline 6 & EC=03400000 & Instruction Page Fault & Instruction access page fault & An instruction in a page not listed in the page table was executed. \\
\hline 7 & EC=03420000 & Invalid Inst. Access & Instruction access error & An attempt was made to access an address space beginning with the address \(0 \times 80000000\). (This instruction address error is one that is reported by a specific error code other than " 03400000 " and "03460000".) \\
\hline 8 & EC=03460000 & Inst. Access Protection & Instruction access protection error & Memory protection was violated by fetching an instruction. \\
\hline 9 & EC=03600000 & Data Page Fault & Data access page fault & Data in a page not listed in the page table was fetched. \\
\hline 10 & \(E C=03620000\) & Invalid Data Access & Data access error & An attempt was made to access an address space beginning with the address \(0 \times 80000000\). (This data address error is one that is reported by a specific error code other than " 03600000 " and " 03660000 ".) \\
\hline 11 & EC=03660000 & Data Access Protection & Data access protection error & Memory protection was violated by fetching data. \\
\hline 12 & EC=03470000 & Data Alignment Error & Data alignment error & Word data was accessed beyond word boundaries (\(2 \mathrm{n}+\) 1), or long word data was accessed beyond long word boundaries (\(4 n+1,4 n+2,4 n+3\)), or quad word data was accessed beyond quad word boundaries \((8 n+1,8 n\) \(+2, \ldots, 8 n+7)\). \\
\hline
\end{tabular}

Figure 4-2 Program Error Analysis Procedure (1/2)

Figure 4-2 Program Error Analysis Procedure (2/2)

The following is an example of a program error analysis based on an actually displayed error message.

<Step 1>
Read the error message "Program error (Data Page Fault)". It means that data in a page not listed in the page table was fetched.

\section*{<Step 2>}

From FADR \(=48000000\), you can figure out that the error occurred in an access to the address 0x48000000.
\(<\) Step 3>
From \(\mathrm{PC}=300321 \mathrm{cc}\), you can figure out that the failed instruction is located at the address 0x 300321 cc .

\section*{<Step 4>}

The displayed piece of information "PC=300321cc(name \(=\) dry type \(=\operatorname{task}(T E X T) \quad\) raddr \(=\) 000001 cc)" conveys the meaning of "the address \(0 \times 300321 \mathrm{cc}\) (name=program name type=program type [program component] raddr=relative address to the beginning of the program)". From this information piece, figure out what instruction in what program was defeated by the error during the execution. (If the address \(0 \times 300321 \mathrm{cc}\) is not existent in the text area of the program [or subroutine], it is conceivable that a link was made to an undefined address. From the displayed PR information, figure out from what place the link was made.)

\section*{<Step 5>}

The displayed INST information reports on the failed instruction plus the preceding and succeeding instructions. From this information piece, you can determine the failed instruction from the code \(0 \times 2 \mathrm{~d} 22 \mathrm{e} 3 \mathrm{bc}\), which represents the following machine instructions:
```

MOV.L R2,@R13
MOV \#-68,R3

```

Of these, the first instruction stores the content of general register 2 in the location indicated by the content of general register 13.
The content of general register 13 is the value 48000000 , which is the same as the displayed FADR value. This means that the value 48000000 stored in R13 is the direct cause of the error.

\section*{<Step 6>}

By referring to the displayed INST information, you need to identify the instructions before and after the failed instruction. From the information, you can find out the 18 instruction before the failed instruction and the three instructions thereafter. The 18 preceding instructions are as follows:
\begin{tabular}{lll}
PC-36 & MOV. L & L76+58, R5 \\
PC-34 & SUB & R2, R14 \\
PC-32 & MOV. L & @(R0, R15), R2 \\
PC-30 & MOV & R9, R6 \\
PC-28 & MOV & \#72, R13 \\
\hline PC-26 & SUB & R2, R14 \\
PC-24 & MOV & R14, R7 \\
PC-22 & JSR & @R12 \\
PC-20 & SHLL8 & R13 \\
PC-18 & MOV. L & L76+62, R2 \\
PC-16 & MOV & R9, R1 \\
PC-14 & MOV & R14, R0 \\
PC-12 & JSR & @R2 \\
PC-10 & SHLL16 & R13 \\
PC-8: & MOV. L & L76+66, R4 \\
PC-6: & JSR & @R12 \\
PC-4: & MOV & R0, R5 \\
PC-2: & MOV & \#1, R2 \\
PC \(:\) & MOV.L & R2, @R13
\end{tabular}

Then, based on the fact that the content of R13 is the value 48000000 , you need to find what instruction loaded that value into R13. This can be accomplished as described below.
Looking at the above 18 instructions, you can learn the following: 1) the instruction at PC-28 loaded the value \(0 \times 00000048\) into R13, and 2) the instructions at PC-20 and PC-10 shifted the content of R13 24 bits to the left, resulting in the value \(0 \times 48000000\).

\section*{<Step 7>}

From the results of the above steps, it is very likely that the value \(0 \times 48000000\) was assigned directly to a pointer variable. So, you have to check if there was any improper processing done in the program.
It is also likely that the incorrect address value \(0 \times 48000000\) was transferred from memory to R13. In this case, you have to figure out what stored it in memory in what place and why.

\section*{4 ERROR LOG INFORMATION}

\section*{(2) Macro parameter check error}

This type of error is reported when an erroneous parameter is detected in a macro instruction issued in a program to the CPMS. When such a parameter is detected, the issuing task is aborted. Find the erroneous parameter by referring to the displayed error message.
The table below shows the general format of error messages for macro parameter check errors and describes each format element.

Table 4-9 Macro Parameter Check Error Message Format
```

%CPMS-E-S0FT-0002 SITE=xxxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=xxxxxxxx Macro parameter error
TN =xxxxxxxx SVC =xxxxxxyx
EPN =xxxxxxxx PARA1=xxxxxxxx PARA2=xxxxxxxx PARA3=xxxxxxxx PARA4=xxxxxxxx
PARA5=xxxxxxxx PARA6=xxxxxxxx PARA7=xxxxxxxx

```
\begin{tabular}{|c|c|c|}
\hline Item & \multicolumn{2}{|r|}{Description} \\
\hline EC & \multicolumn{2}{|l|}{Error Code: Identifies the type of the error detected.} \\
\hline & EC & Meaning \\
\hline & 05130000 & An undefined macro instruction was issued -- an abnormal SVC was used. \\
\hline & 05110000 & An erroneous parameter was detected. The parameter number of the erroneous parameter is reported as EPN and its value as PARAn. \\
\hline TN & \multicolumn{2}{|l|}{Task Number: Is the task number of the task that issued the macro instruction.} \\
\hline SVC & \multicolumn{2}{|l|}{\begin{tabular}{l}
SuperVisory Macro Code \\
Identifies the type of the issued macro instruction. All predefined macro codes and the macro names identified by them are listed in Table 4-10.
\end{tabular}} \\
\hline EPN & \multicolumn{2}{|l|}{Error Parameter Number Is the ordinal number assigned to the erroneous parameter. This item is significant only when \(\mathrm{EC}=05110000\).} \\
\hline PARAn & \multicolumn{2}{|l|}{\begin{tabular}{l}
Parameter n \\
Each shows the value of the numbered parameter. PARA1 shows the value of the first parameter; PARA2 shows the value of the second parameter; and so on. \\
Example: If \(\mathrm{SVC}=0000000 \mathrm{~A}\) (timer macro), then each of the PARAn shows one of the following: \\
PARA1: id \\
PARA2: tn \\
PARA3: fact \\
PARA4: t \\
PARA5: cyt \\
Therefore, if \(\mathrm{EPN}=00000004\), it indicates that the value of PARA4, i.e. " t ", was in error.
\end{tabular}} \\
\hline
\end{tabular}

Table 4-10 Predefined Supervisory Macro Codes and Macro Names Identified by Them
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & SVC & 0000000i & 0000001i & \multicolumn{1}{|c|}{0000002 i} & 0000003 i & 0000004 i \\
\hline 0 & 0000005 i \\
\hline 1 & queue & prree & elset & gtkmem & prog_start & \\
\hline 2 & rleas & gfact & (cpms_ginfo) & wrtmem & prog_switch & \\
\hline 3 & sfact & gtime & (chml) & chkbmem & prog_exit & \\
\hline 4 & abort & exit & (taskenv) & chktaer & prog_call & \\
\hline 5 & susp & asusp & (printf) & getsysinfo & & \\
\hline 6 & rsum & arsum & & gettaskinfo & & \\
\hline 7 & ctime & open & & save_env & & \\
\hline 8 & wait & close & wdtset & resume_env & & \\
\hline 9 & post & read & & gettimebase & & \\
\hline A & timer & write & & atmswap & & \\
\hline B & delay & ioctl & & atmand & & \\
\hline C & stime & usrdhp & & atmor & & \\
\hline D & chap & dhpset & & atmxor & & \\
\hline E & resrv & dhpctl & & atmadd & & \\
\hline F & free & dhpread & & atmtas & & \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}

\section*{(3) I/O error}

\section*{- Network I/O error}

This type of error is reported when an abnormality occurs in the network's hardware or transmission path during accessing the network in a program using network access macros and libraries.

The table below shows the general format of error messages for network I/O errors and describes each format element.

\section*{Table 4-11 I/O Error Message Format}
```

%LNET-x-xxxx-0004 SITE=xxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=xxxxxxxx I/O Error (subtitle)
UNO =xxxxxxx DEV =xxxxxxxx DVA =xxxxxxxx IOEC =xxxxxxxx
TN =xxxxxyxx
DAT000=xxxxxxxx DAT001=xxxxxxxx DAT002=xxxxxxxx DAT003=xxxxxxxx DAT004=xxxxxxxx
DAT005=xxxxxxxx DAT006=xxxxxxxx DAT007=xxxxxxxx DAT008=xxxxxxxx DAT009=xxxxxxxx
DAT010=xxxxxxxx DAT011=xxxxxxxx DAT012=xxxxxxxx DAT013=xxxxxxxx DAT014=xxxxxxxx
DAT015=xxxxxxxx DAT016=xxxxxxxx DAT017=xxxxxxxx DAT018=xxxxxxxx DAT019=xxxxxxxx
DAT020=xxxxxxxx DAT021=xxxxxxxx DAT022=xxxxxxxx DAT023=xxxxxxxx DAT024=xxxxxxxx
DAT025=xxxxxxxx DAT026=xxxxxxxx DAT027=xxxxxxxx DAT028=xxxxxxxx DAT029=xxxxxxxx
DAT030=xxxxxxxx DAT031=xxxxxxxx DAT032=xxxxxxxx DAT033=xxxxxxxx DAT034=xxxxxxxx
DAT035=xxxxxxxx DAT036=xxxxxxxx DAT037=xxxxxxxx DAT038=xxxxxxxx DAT039=xxxxxxxx
DAT040=xxxxxxxx DAT041=xxxxxxxx DAT042=xxxxxxxx DAT043=xxxxxxxx DAT044=xxxxxxxx
DAT045=xxxxxxxx DAT046=xxxxxxxx DAT047=xxxxxxxx DAT048=xxxxxxxx DAT049=xxxxxxxx
DAT050=xxxxxxxx DAT051=xxxxxxxx DAT052=xxxxxxxx DAT053=xxxxxxxx DAT054=xxxxxxxx
DAT055=xxxxxxxx DAT056=xxxxxxxx DAT057=xxxxxxxx DAT058=xxxxxxxx DAT059=xxxxxxxx
DAT060=xxxxxxxx DAT061=xxxxxxxx DAT062=xxxxxxxx DAT063=xxxxxxxx DAT064=xxxxxxxx
DAT065=xxxxxxxx DAT066=xxxxxxxx DAT067=xxxxxxxx DAT068=xxxxxxxx DAT069=xxxxxxxx
DAT070=xxxxxxxx DAT071=xxxxxxxx DAT072=xxxxxxxx DAT073=xxxxxxxx DAT074=xxxxxxxx
DAT075=xxxxxxxx DAT076=xxxxxxxx DAT077=xxxxxxxx DAT078=xxxxxxxx DAT079=xxxxxxxx
DAT080=xxxxxxxx DAT081=xxxxxxxx DAT082=xxxxxxxx DAT083=xxxxxxxx DAT084=xxxxxxxx
DAT085=xxxxxxxx DAT086=xxxxxxxx DAT087=xxxxxxxx DAT088=xxxxxxxx DAT089=xxxxxxxx
DAT090=xxxxxxxx DAT091=xxxxxxxx DAT092=xxxxxxxx DAT093=xxxxxxxx DAT094=xxxxxxxx
DAT095=xxxxxxxx DAT096=xxxxxxxx DAT097=xxxxxxxx DAT098=xxxxxxxx DAT099=xxxxxxxx
DAT100=xxxxxxxx DAT101=xxxxxxxx DAT102=xxxxxxxx DAT103=xxxxxxxx DAT104=xxxxxxxx
DAT105=xxxxxxxx DAT106=xxxxxxxxx DAT107=xxxxxxxx DAT108=xxxxxyxx DAT109=xxxxxxxx

```
\begin{tabular}{|c|c|}
\hline Item & Description \\
\hline EC & Error Code: Identifies the type of the error detected. For details, see the information under "4.2.15 NCP-F error log info and required actions." \\
\hline UNO & I/O Unit number: Is the unit number of the I/O unit used. \\
\hline DEV & \begin{tabular}{l}
Device number \\
Identifies the type and mounting slot of the I/O device in which the error occurred.
\end{tabular} \\
\hline DVA & \begin{tabular}{l}
Device Address \\
Identifies the memory location at which the device is installed; always set to 0 when an error of this type is detected.
\end{tabular} \\
\hline IOEC & \begin{tabular}{l}
I/O Error Code \\
Is one of the following detail error codes: \\
0x8xxxxxxx: Indicates that the I/O process stopped due to an adapter abnormality. \\
0x4xxxxxxx: Indicates that the CPMS issued a LOGSAVE command. (Applicable only to the NCP-F.) \\
0x2xxxxxxx: Indicates that the CPMS restarted the device. (Applicable only to the builtin LANCE and LANCP.)
\end{tabular} \\
\hline TN & \begin{tabular}{l}
Task Number \\
Is the task number of the task in which the error occurred.
\end{tabular} \\
\hline DATn & \begin{tabular}{l}
Data \(n\) \\
Each is a detail error data piece, which varies depending on the EC's values. If the reported error is related to the built-in LANCE or the LANCP module, see Tables 4-12 through 4-15.
\end{tabular} \\
\hline
\end{tabular}

Note: If any of the above items is reported with the value 0xFFFFFFFF, it means nothing.

Table 4-12 Error Detail Data for Built-in LANCE-/LANCE-Detected I/O Errors (EC=0x078013XX) (1/2)

Table 4-12 Error Detail Data for Built-in LANCE-/LANCE-Detected I/O Errors (EC=0x078013XX) (2/2)

The data pieces DAT8 thru DAT109 are driver table information.
\(\begin{array}{ll}\text { Table 4-13 } & \text { Error Detail Data for Built-in LANCE PCI Bus I/O Errors } \\ & (E C=0 \times 078014 \mathrm{XX})(1 / 5)\end{array}\)

Table 4-13 Error Detail Data for Built-in LANCE PCI Bus I/O Errors (EC=0x078014XX) (2/5)

Table 4-13 Error Detail Data for Built-in LANCE PCI Bus I/O Errors (EC=0x078014XX) (3/5)

Table 4-13 Error Detail Data for Built-in LANCE PCI Bus I/O Errors (EC=0x078014XX) (4/5)

\section*{4 ERROR LOG INFORMATION}

Table 4-13 Error Detail Data for Built-in LANCE PCI Bus I/O Errors (EC=0x078014XX) (5/5)
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATn & Data name & \multicolumn{4}{|c|}{Detail data} \\
\hline \multirow[t]{5}{*}{DAT5} & \multirow[t]{5}{*}{BUERRINTMST info} & \multicolumn{4}{|l|}{} \\
\hline & & Bit(s) & Name & Set value and its meaning & Description \\
\hline & & 2 & errMSTBU & \begin{tabular}{l}
1: The CALINK caused an error when it was master. \\
0 : The CALINK did not cause any error.
\end{tabular} & When it was master, the CALINK (BU) caused the error reported in BUERRPTR. \\
\hline & & 1 & errMSTNU & \begin{tabular}{l}
1: The NPU caused an error when it was master. \\
0 : The NPU did not cause any error.
\end{tabular} & When it was master, the NPU caused the error reported in BUERRPTR. \\
\hline & & 0 & errMSTPU & \begin{tabular}{l}
1: The CPU caused an error when it was master. \\
0 : The CPU did not cause any error.
\end{tabular} & When it was master, the CPU caused the error reported in BUERRPTR. \\
\hline \multirow[t]{5}{*}{DAT6} & \multirow[t]{5}{*}{BUERRCMD info} & \multicolumn{3}{|l|}{31} & 43 \\
\hline & & \multicolumn{3}{|r|}{(Reserved)} & errCMD \\
\hline & & Bit(s) & Name & Set value and its meaning & Description \\
\hline & & 31 to 4 & (Reserved) & 0x0000 00 & (Reserved) \\
\hline & & 3 to 0 & errCMD & \begin{tabular}{l}
PCI command: Set when the PCI bus master has encountered the error: \\
0001: A write was attempted in a BUSBUSY or a timeout error condition. \\
0000: A read was attempted in a BUSBUSY or a timeout error condition.
\end{tabular} & This information piece indicates the command (PCI command or read/write) that was attempted in the error condition reported in the BUERRPTR register. \\
\hline DAT7 & (Unused) & & & & \\
\hline
\end{tabular}

The data pieces DAT8 thru DAT109 are driver table information.

Table 4-14 Error Detail Data for LANCP I/O Errors (EC=0x078016XX)

The data pieces DAT8 thru DAT109 are driver table information.

\section*{4 ERROR LOG INFORMATION}

Table 4-15 Error Detail Data for Driver-Detected I/O Errors (EC=0x078015XX)
\begin{tabular}{|l|l|l|}
\hline DATn & \multicolumn{1}{|c|}{ Data name } & \multicolumn{1}{c|}{ Detail data } \\
\hline DAT0 & (Unused) & \\
\hline DAT1 & LANCP MSW0 & \begin{tabular}{l}
MSW0 when the error is related to the LANCP. For details, see the LANCP-related \\
information under "(5) Module error."
\end{tabular} \\
\hline DAT2 & LANCP MSW1 & \begin{tabular}{l}
MSW1 when the error is related to the LANCP. For details, see the LANCP-related \\
information under "(5) Module error."
\end{tabular} \\
\hline DAT3 & IP address & \begin{tabular}{l}
This IP address information is set only when EC=0x07801512 (duplicated IP address \\
detected).
\end{tabular} \\
\hline DAT4 & MAC address 1 & \begin{tabular}{l}
This information piece is set only when EC=0x07801512 (duplicated IP address \\
detected). It is the upper four bytes of the duplicated MAC address.
\end{tabular} \\
\hline DAT5 & MAC address 2 & \begin{tabular}{l}
This information piece is set only when EC=0x07801512 (duplicated IP address \\
detected). It is the lower two bytes of the duplicated MAC address.
\end{tabular} \\
\hline DAT6 & (Unused) & \\
\hline DAT7 & (Unused) & \\
\hline
\end{tabular}

The data pieces DAT8 thru DAT109 are driver table information.

\section*{- I/O error}

This type of error is reported when a problem is detected during input or output with devices. The error detail data varies with devices in which an I/O error is detected.

\section*{Table 4-16 I/O Error Message Format}
```

%CPMS-E-HARD-000x SITE=xxxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=xxxxxxxx I/O Error (subtitle)
UNO =xxxxxxxx DEV =xxxxxxxx DVA =xxxxxxxx IOEC =xxxxxxxx TN =xxxxxxxx
DAT0 =xxxxxxxx DAT1 =xxxxxxxx DAT2 =xxxxxxxx DAT3 =xxxxxxxx DAT4 =xxxxxxxx
DAT5 =xxxxxxxx DAT6 =xxxxxxxx DAT7 =xxxxxxxx DAT8 =xxxxxxxx DAT9 =xxxxxxxx
DAT10 =xxxxxxxx DAT11 =xxxxxxxx DAT12 =xxxxxxxx DAT13 =xxxxxxxx DAT14 =xxxxxxxx
DAT15 =xxxxxxxx DAT16 =xxxxxxxx DAT17 =xxxxxxxx DAT18 =xxxxxxxx DAT19 =xxyxxxxx
DAT20 =xxxxxxxx DAT21 =xxxxxxxx DAT22 =xxxxxxxx DAT23 =xxxxxxxx DAT24 =xxxxxxxy
DAT25 =xxxxxxxx DAT26 =xxxxxxxx DAT27 =xxxxxxxx DAT28 =xxxxxxxx DAT29 =xxxxxxxx
DAT30 =xxxxxxxx DAT31 =xxxxxxxx DAT32 =xxxxxxxx DAT33 =xxxxxxxx DAT34 =xxxxxxxx
DAT35 =xxxxxxxx DAT36 =xxxxxxxx DAT37 =xxxxxxxx DAT38 =xxxxxxxx DAT39 =xxxxxxxx
DAT40 =xxxxxxxx DAT41 =xxxxxxxx DAT42 =xxxxxxxx DAT43 =xxxxxxxx DAT44 =xxxxxxxx
DAT45 =xxxxxxxx DAT46 =xxxxxxxx DAT47 =xxxxxxxx DAT48 =xxxxxxxx DAT49 =xxxxxxxx

```
\begin{tabular}{|c|c|}
\hline Item & Description \\
\hline EC & Error Code: Identifies the type of the error detected. For details, see Table 4-17. \\
\hline UNO & I/O Unit number: Is the unit number of the I/O unit used. \\
\hline DEV & \\
\hline DVA & \begin{tabular}{l}
Device Address \\
Identifies the memory location at which the device is installed; always set to 0 when an error of this type is detected.
\end{tabular} \\
\hline IOEC & \begin{tabular}{l}
I/O Error Code \\
Is the detail error code for the error. If this information piece is not provided for a detected I/O error, it is always 0 .
\end{tabular} \\
\hline TN & \begin{tabular}{l}
Task Number \\
Is the task number of the task in which the error occurred.
\end{tabular} \\
\hline DATn & \begin{tabular}{l}
Data n \\
Each is an error analysis data piece.
\end{tabular} \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}

Table 4-17 Error Codes, Subtitles, and Their Meanings (for I/O Errors)
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Error code & Subtitle & \multicolumn{1}{c|}{ Meaning } & \multicolumn{1}{c|}{ Content of DATn } \\
\hline 1 & EC=07395010 & ROM Board Error & \begin{tabular}{l}
A hardware abnormality was detected \\
during accessing the ROM (CF) board.
\end{tabular} & \begin{tabular}{l}
For details on DATn, see Table \\
\(4-18\).
\end{tabular} \\
\hline
\end{tabular}

Table 4-18 Error Detail Data for ROM Board Errors (1/2)

Table 4-18 Error Detail Data for ROM Board Errors (2/2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATn & Data name & \multicolumn{11}{|c|}{Detail data} \\
\hline \multirow[t]{13}{*}{DAT6} & \multirow[t]{13}{*}{Status register value} & \multicolumn{11}{|l|}{Is a value read in from the Status register among the task file registers.} \\
\hline & & 0 & & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\
\hline & & 0 & - & \(\square 0\) B & BUSY & RDY & DWF & DSC & DRQ & CORR & 0 & ERR \\
\hline & & Bit no. & Bit name & Read-in value & \multicolumn{8}{|c|}{Meaning} \\
\hline & & 0 to 23 & - & Always 0 . & \multicolumn{8}{|l|}{-} \\
\hline & & 24 & BUSY & \begin{tabular}{l}
0 : Cause found. \\
1: Cause not found.
\end{tabular} & \multicolumn{8}{|l|}{Access to the command buffer or registers was in progress.} \\
\hline & & 25 & RDY & \begin{tabular}{l}
0: Cause found. \\
1: Cause not found.
\end{tabular} & \multicolumn{8}{|l|}{Operation could be started immediately.} \\
\hline & & 26 & DWF & \begin{tabular}{l}
0: Cause found. \\
1: Cause not found.
\end{tabular} & \multicolumn{8}{|l|}{Data write failed.} \\
\hline & & 27 & DSC & \begin{tabular}{l}
0: Cause found. \\
1: Cause not found.
\end{tabular} & \multicolumn{8}{|l|}{Preparations for access to the ROM (CF) board were complete.} \\
\hline & & 28 & DRQ & \begin{tabular}{l}
0: Cause found. \\
1: Cause not found.
\end{tabular} & \multicolumn{8}{|l|}{A read or write request was issued to read data from or write data to the Data register.} \\
\hline & & 29 & CORR & \begin{tabular}{l}
0: Cause found. \\
1: Cause not found.
\end{tabular} & \multicolumn{8}{|l|}{A correctable error occurred and was corrected automatically.} \\
\hline & & 30 & - & Always 0 . & \multicolumn{8}{|l|}{-} \\
\hline & & 31 & ERR & \begin{tabular}{l}
0 : Cause found. \\
1: Cause not found.
\end{tabular} & \multicolumn{8}{|l|}{An issued command abended due to the occurrence of an error.} \\
\hline DAT7 & Logical block address & \multicolumn{11}{|l|}{Is the logical block address (LBA) in ROM to which access was being made at the time the error occurred.} \\
\hline \multirow[t]{12}{*}{DAT8} & \multirow[t]{12}{*}{Error register value} & \multicolumn{11}{|l|}{Is a value read in from the Error register among the task file registers.} \\
\hline & & \multicolumn{3}{|l|}{\[
0 \longrightarrow 0
\]} & & UNC & 0 & IDNF & 0 & ABRT & 0 & AMNF \\
\hline & & Bit no. & Bit name & Read-in value & \multicolumn{8}{|c|}{Meaning} \\
\hline & & 0 to 23 & - & Always 0 . & \multicolumn{8}{|l|}{-} \\
\hline & & 24 & BBK & \begin{tabular}{l}
0: Cause found. \\
1: Cause not found
\end{tabular} & \multicolumn{8}{|l|}{A defective block was detected.} \\
\hline & & 25 & UNC & \begin{tabular}{l}
0: Cause found. \\
1: Cause not found.
\end{tabular} & \multicolumn{8}{|l|}{An uncorrectable error occurred.} \\
\hline & & 26 & - & Always 0 . & \multicolumn{8}{|l|}{-} \\
\hline & & 27 & IDNF & \begin{tabular}{l}
0: Cause found. \\
1: Cause not found.
\end{tabular} & \multicolumn{8}{|l|}{Requested sector ID was in error or non-existent.} \\
\hline & & 28 & - & Always 0 . & \multicolumn{8}{|l|}{-} \\
\hline & & 29 & ABRT & \begin{tabular}{l}
0 : Cause found. \\
1: Cause not found.
\end{tabular} & \multicolumn{8}{|l|}{A command was aborted.} \\
\hline & & 30 & - & Always 0 . & \multicolumn{8}{|l|}{-} \\
\hline & & 31 & AMNF & \begin{tabular}{l}
0: Cause found. \\
1: Cause not found.
\end{tabular} & \multicolumn{8}{|l|}{A common error occurred.} \\
\hline
\end{tabular}
(4) Watchdog timer timeout error

This type of error is reported when a timeout is generated by the watchdog timer (WDT). A generated timeout indicates that, because a user task periodically executed to update the watchdog timer was not executed for some reason, the set time value could not be updated within the set timeout period.
If this type of error occurs, a link is automatically made to the built-in subroutine called WDTES. Users can create their own process as this subroutine.
The table below shows the general format of error messages for WDT timeout errors and describes each format element.

Table 4-19 Watchdog Timer Timeout Error Message Format
```

%CPMS-E-SOFT-0005 SITE=xxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=05c70000 WDT timeout error
TIME =xxxxxxxx

```
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Description } \\
\hline EC & \begin{tabular}{c}
Error Code: Identifies the type of the error detected. (This error code is always \\
"05c \(70000 ")\).
\end{tabular} \\
\hline TIME & \begin{tabular}{c}
WDT set time: Is the monitoring time period in milliseconds at the end of which the \\
timeout was generated.
\end{tabular} \\
\hline
\end{tabular}

\section*{(5) Module error}

This type of error is reported when a hardware abnormality is detected in a module.
The table below shows the general format of error messages for module errors and describes each format element.

Table 4-20 Module Error Message Format
```

%CPMS-x-HARD-0006 SITE=xxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=xxxxxxxx Module Error (subtitle)
SLOT =xxxxxxxx MSW0 =xxxxxxxx MSW1 =xxxxxxxx
DAT0 =xxxxxxx DAT1 =xxxxxxxx DAT2 =xxxxxxxx DAT3 =xxxxxxxx DAT4 =xxxxxxxx
DAT5 =xxxxxxxx DAT6 =xxxxxxxx DAT7 =xxxxxxxx

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Description } \\
\hline EC & Error Code: Identifies the type of the error detected. For details, see Table 4-21.
\end{tabular}\(|\)\begin{tabular}{l}
SLOT number: Is the slot number of the slot in which the error-detected module is mounted. \\
\hline MSW0 \\
\hline Module Status Word 0: Is one of the registers indicating the status of the module. The \\
content of this item varies depending on modules. For details, see \\
Table 4-22.
\end{tabular}

Table 4-21 Error Codes, Subtitles, and Their Meanings (for Module Errors) (1/3)
\begin{tabular}{|c|l|l|l|l|}
\hline No. & \multicolumn{1}{|c|}{ Error code } & \multicolumn{1}{|c|}{ Subtitle } & \multicolumn{1}{c|}{ Meaning } & Content of MSW0, MSW1, and DATn \\
\hline 1 & EC=05000000 & \begin{tabular}{l}
Invalid \\
Interrupt
\end{tabular} & An invalid interrupt was detected. & \begin{tabular}{l}
The contents of MSW0, MSW1, and \\
DAT0 are insignificant.
\end{tabular} \\
\hline 2 & EC=05000001 & \begin{tabular}{l}
Undefined \\
Interrupt
\end{tabular} & \begin{tabular}{l}
An interrupt code for which an \\
interrupt-handling process is \\
undefined was detected.
\end{tabular} & \begin{tabular}{l}
DAT0: Is the interrupt code (INTEVT) \\
of the generated interrupt.
\end{tabular} \\
\hline 3 & EC=05000002 & \begin{tabular}{l}
INTEVT \\
Invalid \\
Interrupt
\end{tabular} & \begin{tabular}{l}
An invalid interrupt code was \\
detected.
\end{tabular} & \begin{tabular}{l}
DAT0: Is the interrupt code (INTEVT) \\
of the generated interrupt.
\end{tabular} \\
insignificant.
\end{tabular}

Table 4-21 Error Codes, Subtitles, and Their Meanings (for Module Errors) (2/3)
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Error code & Subtitle & Meaning & Content of MSW0, MSW1, and DATn \\
\hline 10 & EC=0500C001 & \begin{tabular}{l}
NINTR \\
Invalid \\
Interrupt
\end{tabular} & The module that reported on the occurrence of a communication interrupt could not be found. & \begin{tabular}{l}
DAT0: Is the interrupt code (INTEVT) of the generated interrupt. \\
The contents of MSW0 and MSW1 are insignificant.
\end{tabular} \\
\hline 11 & \(\mathrm{EC}=05005001\) & \begin{tabular}{l}
RINTR \\
Invalid Interrupt
\end{tabular} & The module that reported on the occurrence of an I/O interrupt could not be found. & \begin{tabular}{l}
DAT0: Is the interrupt code (INTEVT) of the generated interrupt. \\
The contents of MSW0 and MSW1 are insignificant.
\end{tabular} \\
\hline 12 & EC=0D010000 & \begin{tabular}{l}
Memory \\
Alarm
\end{tabular} & A total of five 1-bit errors were detected successively in memory. & \begin{tabular}{l}
DAT0: Time when the first error was detected. \\
DAT1: Time when the second error was detected. \\
DAT2: Time when the third error was detected. \\
DAT3: Time when the fourth error was detected. \\
DAT4: Time when the fifth error was detected. \\
For information on the contents of MSW0 and MSW1, see the information under "CPU" in Table 4-22.
\end{tabular} \\
\hline 13 & EC=0d320000 & Memory Error & An unrecoverable error (2-bit error) was detected while the builtin processor was accessing the internal memory. & \begin{tabular}{l}
DAT0: Is the MSW2 information for the module in which the error occurred. \\
For information on the contents of MSW0, MSW1, and MSW2, see the information for that module in Table 4-22.
\end{tabular} \\
\hline 14 & EC=0d330000 & Hardware WDT Timeout & A hardware watchdog timer timeout was detected. & \begin{tabular}{l}
DAT0: Is the MSW2 information for the module in which the error occurred. \\
For information on the contents of MSW0, MSW1, and MSW2, see the information for that module in Table 4-22.
\end{tabular} \\
\hline 15 & EC=0d340000 & \begin{tabular}{l}
Software WDT \\
Timeout
\end{tabular} & A software watchdog timer timeout was detected. & \begin{tabular}{l}
DAT0: Is the MSW2 information for the module in which the error occurred. \\
For information on the contents of MSW0, MSW1, and MSW2, see the information for that module in Table 4-22.
\end{tabular} \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}

Table 4-21 Error Codes, Subtitles, and Their Meanings (for Module Errors) (3/3)
\begin{tabular}{|c|l|l|l|l|}
\hline No. & \multicolumn{1}{|c|}{ Error code } & \multicolumn{1}{c|}{ Subtitle } & \multicolumn{1}{c|}{ Meaning } & \begin{tabular}{l}
Content of MSW0, MSW1, and DATn
\end{tabular} \\
\hline 16 & EC=0d350000 & \begin{tabular}{l}
RAM Sum \\
Check Error
\end{tabular} & \begin{tabular}{l}
A RAM checksum error was \\
detected.
\end{tabular} & \begin{tabular}{l}
DAT0: Is the MSW2 information for \\
the module in which the error \\
occurred.
\end{tabular} \\
\hline 17 & EC=0d360000 & \begin{tabular}{ll}
ROM Sum \\
Check Error
\end{tabular} & \begin{tabular}{l}
A ROM checksum error was \\
detected.
\end{tabular} & \begin{tabular}{l}
For information on the contents of \\
MSW0, MSW1, and MSW2, see the \\
information for that module in Table
\end{tabular} \\
4-22.
\end{tabular}

Table 4-22 MSW Detail Data for Modules (1/6)

\section*{4 ERROR LOG INFORMATION}

Table 4-22 MSW Detail Data for Modules (2/6)

Table 4-22 MSW Detail Data for Modules (3/6)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Module name & \multicolumn{1}{|c|}{ MSW } & \multicolumn{4}{|c|}{\begin{tabular}{l}
MSW2 \\
CPU \\
(continued \\
from \\
preceding \\
page)
\end{tabular}} & \\
\hline
\end{tabular}

Table 4-22 MSW Detail Data for Modules (4/6)

Table 4-22 MSW Detail Data for Modules (5/6)

\section*{4 ERROR LOG INFORMATION}

Table 4-22 MSW Detail Data for Modules (6/6)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Module name & \[
\frac{\text { MSW }}{\text { MSW1 }}
\] & \multicolumn{11}{|c|}{Detail data} \\
\hline \multirow[t]{20}{*}{LANCP} & \multirow[t]{20}{*}{MSW1} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{array}{cc}
2 & 3 \\
\hline & 0-0
\end{array}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
4
\] \\
R6TO
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
5 \\
\mathrm{R} 6 \mathrm{MA}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline 6 \\
\hline \text { R6TA } \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{gathered}
8 \\
\mathrm{R} 6 \mathrm{RP} \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{0} & \multirow[t]{2}{*}{\[
\begin{gathered}
10 \\
\hline \text { R7DPE }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|c|rr|}
\hline 11 & 12 & 28 \\
R7BE & 0 & -0 \\
\hline
\end{tabular}}} \\
\hline & & & & & & & & & & & & \\
\hline & & 29 & \(30 \quad 31\) & & & & & & & & & \\
\hline & & ERR R & RUN RMVBLR & REQ & & & & & & & & \\
\hline & & Bit no. & Bit name & & Read-in & value & & & & & eaning & \\
\hline & & 0 & MINT & & terrupt nerated terrupt nerated & & & \begin{tabular}{l}
dicates \\
as gener
\end{tabular} & & er or not a & a networ & rk-related interrupt \\
\hline & & 1 & RINT & Alwa & ys 0 . & & & \begin{tabular}{l}
dicates \\
etwork-r
\end{tabular} & & er or not a was gene & \begin{tabular}{l}
an inter \\
rated.
\end{tabular} & rupt other than \\
\hline & & 2 to 3 & - & Alwa & ys 0 . & & - & & & & & \\
\hline & & 4 & R6TO & \[
\begin{aligned}
& \text { 1: De } \\
& \text { 0: No }
\end{aligned}
\] & \begin{tabular}{l}
etected. \\
ot detec
\end{tabular} & & & \begin{tabular}{l}
dicates \\
etected
\end{tabular} & & er or not a access fro & an inter m the & nal timeout was CPU. \\
\hline & & 5 & R6MA & \[
\begin{aligned}
& \text { 1: De } \\
& \text { 0: No }
\end{aligned}
\] & \begin{tabular}{l}
etected. \\
ot detec
\end{tabular} & & & \begin{tabular}{l}
dicates \\
etected
\end{tabular} & & er or not a access fro & an inter m the & nal master abort was CPU. \\
\hline & & 6 & R6TA & \[
\begin{aligned}
& \text { 1: De } \\
& \text { 0: No }
\end{aligned}
\] & \begin{tabular}{l}
etected. \\
ot detec
\end{tabular} & & & \begin{tabular}{l}
dicates \\
etected
\end{tabular} & & er or not a access fro & an inter om the & nal retry was CPU. \\
\hline & & 7 & R6WP & \[
\begin{aligned}
& \text { 1: De } \\
& \text { 0: No }
\end{aligned}
\] & \begin{tabular}{l}
etected. \\
ot detec
\end{tabular} & & & \begin{tabular}{l}
dicates \\
etected
\end{tabular} & & \begin{tabular}{l}
er or not a \\
write-acce
\end{tabular} & an inter ess from & nal parity error was \(m\) the CPU. \\
\hline & & 8 & R6RP & \[
\begin{aligned}
& \text { 1: De } \\
& \text { 0: No }
\end{aligned}
\] & \begin{tabular}{l}
etected. \\
ot detec
\end{tabular} & & & \begin{tabular}{l}
dicates \\
etected
\end{tabular} & & er or not an read-acce & \begin{tabular}{l}
an inter \\
from
\end{tabular} & nal parity error was the CPU. \\
\hline & & 9 & - & Alwa & ys 0 . & & - & & & & & \\
\hline & & 10 & R7DPE & \[
\begin{aligned}
& \text { 1: De } \\
& \text { 0: No }
\end{aligned}
\] & \begin{tabular}{l}
etected. \\
ot detec
\end{tabular} & & & dicate uring \(w\) & & er or not a cess from & \begin{tabular}{l}
a parity \\
the CP
\end{tabular} & error was detected U. \\
\hline & & 11 & R7BE & \[
\begin{aligned}
& \text { 1: De } \\
& \text { 0: No }
\end{aligned}
\] & \begin{tabular}{l}
etected. \\
ot detec
\end{tabular} & & & dicates etected & & er an unde write-acc & efinedcess fro & pattern CBE was \(m\) the CPU. \\
\hline & & 12 to 28 & 8 & Alwa & ys 0 . & & - & & & & & \\
\hline & & 29 & ERR & \[
\begin{aligned}
& \text { 1: Lit } \\
& \text { 0: No }
\end{aligned}
\] & \begin{tabular}{l}
t. \\
ot lit.
\end{tabular} & & & RR LED & statu & & & \\
\hline & & 30 & RUN & \[
\begin{aligned}
& \text { 1: Lit } \\
& \text { 0: No }
\end{aligned}
\] & ot lit. & & & UN LED & stat & & & \\
\hline & & 31 & RMVBLREQ & \[
\begin{aligned}
& \text { 1: Re } \\
& \text { 0: No }
\end{aligned}
\] & \begin{tabular}{l}
equested \\
ot reque
\end{tabular} & \begin{tabular}{l}
d. \\
sted.
\end{tabular} & & dicates & heth & er or not h & hot swa & pping was requested. \\
\hline
\end{tabular}
(6) Kernel warning

Although this type of message is not an error message, it indicates that an abnormality affecting the execution of the user program was detected.
The table below shows the general format of kernel warning messages and describes each format element.

Table 4-23 Kernel Warning Message Format
```

%CPMS-W-xxxx-0007 SITE=xxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=xxxxxxxx Kernel Warning
TN = xxxxxxxx
DAT0 = xxxxxxxx DAT1 = xxxxxxxx DAT2 = xxxxxxxx DAT3 = xxxxxxxx DAT4 = xxxxxxxx
DAT5 = xxxxxxxx DAT6 = xxxxxxxx DAT7 =xxxxxxxx

```

```

        XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    ```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Description } \\
\hline EC & Error Code: Identifies the type of the warning made. For details, see Table 4-24. \\
\hline TN & Task Number: Is the task number of the task in which the warning became necessary. \\
\hline DATn & Each is a piece of error analysis data. For details, see Table 4-24. \\
\hline MESSAGE & See Table 4-24. \\
\hline
\end{tabular}

Table 4-24 Error Code and Its Meaning (for Kernel Warnings)
\begin{tabular}{|c|c|l|l|l|}
\hline No. & \multicolumn{1}{|c|}{ Error code } & \multicolumn{1}{c|}{ Message } & \multicolumn{1}{c|}{ Meaning } & \multicolumn{1}{c|}{ Contents of TN and DATn } \\
\hline 1 & EC=05A00001 & \(\begin{array}{l}\text { No message is } \\
\text { displayed. }\end{array}\) & \(\begin{array}{l}\text { A difference of } 15 \text { seconds } \\
\text { or more was detected } \\
\text { between the TOD time and } \\
\text { the timer's time value } \\
\text { during system time } \\
\text { synchronization. }\end{array}\) & \(\begin{array}{l}\text { TN: The task number of the task that } \\
\text { was running at the time of system } \\
\text { time synchronization. } \\
\text { DAT0: The difference in seconds. } \\
\text { DAT1: The difference in subseconds. } \\
\text { DAT2: The seconds count of the } \\
\text { specified time. }\end{array}\) \\
DAT3: The difference in subseconds \\
from the specified time.
\end{tabular}\(\}\)\begin{tabular}{l}
DAT4: The seconds count of the TOD. \\
DAT5: The subseconds count of the \\
TOD.
\end{tabular}

\section*{(7) Kernel information}

This type of error is reported when a transient abnormality not affecting the execution of the user program at all is detected in the CPMS.
The table below shows the general format of kernel information messages, followed by a short description.

Table 4-25 Kernel Information Message Format
```

%CPMS-I-xxxx-0008 SITE=xxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=xxxxxxxx Kernel information
TN =xxxxxxxx
DAT0 = xxxxxxxx DAT1 = xxxxxxxx DAT2 =xxxxxxxx DAT3 = xxxxxxxx DAT4 = xxxxxxxx
DAT5 =xxxxxxxx DAT6 = xxxxxxxx DAT7 =xxxxxxxx

```


\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Item } & Description \\
\hline EC & \begin{tabular}{c}
Error Code: Identifies the type of information presented. At present, the system does not \\
produce any report on this type of error.
\end{tabular} \\
\hline
\end{tabular}
(8) System down -- system error

This type of error is reported when an abnormality making further processing impossible is detected by the CPMS.
The table below shows the general format of error messages for system errors and describes each format element.

Table 4-26 System Down (System Error) Message Format

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{\(\quad\) Description } \\
\hline EC & Error code (see Table 4-27). \\
\hline TN & The task number of the task in which the error occurred. \\
\hline PC & The content of the program counter. \\
\hline EXPEV & \begin{tabular}{l}
The content of the exception code register, which is a 32-bit register and identifies the cause of data \\
access and alignment exceptions.
\end{tabular} \\
\hline FADR & Fault address \\
\hline SR & Status register, which identifies the status of the processor. \\
\hline EXECD & The instruction that encountered the error during its execution. \\
\hline PR & \begin{tabular}{l}
The content of the procedure register, which is used in calling a subroutine and stores the return \\
address to the calling routine.
\end{tabular} \\
\hline SP & The content of the stack pointer -- the register R15 is used as the stack pointer. \\
\hline GBR & \begin{tabular}{l}
The content of the global base register, which stores base addresses to be used in GBR-indirect \\
addressing with displacement and in indexed GBR-indirect addressing.
\end{tabular} \\
\hline MACH & \begin{tabular}{l}
The content of the MAC register high, which saves the accumulated value of a MAC (Multiply and \\
Accumulate) instruction or the result of a MAC or a MUL instruction. When the result of a MAC \\
operation is a 64-bit value, this register contains the upper 32-bit value.
\end{tabular} \\
\hline MACL & \begin{tabular}{l}
The content of the MAC register low, which serves the same purpose as MACH. . When the result \\
of a MAC operation is a 64-bit value, this register contains the lower 32-bit value. When the \\
result of a MAC operation is a 32-bit value, it contains the entire 32-bit value.
\end{tabular} \\
\hline FPSCR & The content of the floating-point status/control register. \\
\hline FPUL & \begin{tabular}{l}
The content of the floating-point communication register, a register via which data transfer is done \\
between general and floating-point registers.
\end{tabular} \\
\hline Rxx & The content of the general register numbered xx. \\
\hline INST & \begin{tabular}{l}
Eight instructions before and after the address pointed to by the PC. \\
\hline PC
\end{tabular} \begin{tabular}{l}
Instruction at the address pointed to by the PC. \\
\hline STACK \\
\hline Eight long words of data before and after the address pointed to by the SP. \\
\hline SP \\
PC \\
The content of the location pointed to by the SP (i.e., part of the stack content). \\
\hline FADR
\end{tabular} \begin{tabular}{l}
The content of the program counter. Information on the address value contained in the program \\
counter is presented, enclosed in parentheses. If the address value identifies a memory location in \\
a program, the following information is presented: \\
(name \(=\) program name type \(=\) program type [program component] raddr = relative address to \\
the beginning of the program)
\end{tabular} \\
\hline & Fault address. Information on the fault address is presented, enclosed in parentheses. \\
\hline
\end{tabular}

Table 4-27 Error Codes, Subtitles, and Their Meanings (for System Errors)
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Error code & Subtitle & Brief description & Meaning \\
\hline 1 & EC=03030000 & Alignment Error & Alignment error & An instruction's operand was not aligned on word boundaries. \\
\hline 2 & EC=03040000 & Illegal Instruction & Illegal-instruction error & An attempt was made to execute an illegal instruction. \\
\hline 3 & EC=03080000 & Privileged Instruction & Privileged instruction violation & A privileged instruction, an instruction that may be executed only in system mode, was executed. \\
\hline 4 & EC=03090000 & Illegal Breakpoint & Illegal-breakpoint exception error & An instruction causing a breakpoint exception was executed. \\
\hline 5 & EC=030f0000 & Illegal Exception & Illegal exception & An undefined exception was reported. \\
\hline 6 & EC=03380000 & FP Unavailable & Floating-point unavailable & An attempt was made to execute an unavailable floating-point instruction during the execution of CPMS. \\
\hline 7 & EC=03390000 & FP System Down & Floating-point arithmetic error & An error was encountered during the execution of a floating-point arithmetic instruction. \\
\hline 8 & EC=03400000 & Instruction Page Fault & Instruction access page fault & An instruction in a page not listed in the page table was fetched. \\
\hline 9 & EC=03420000 & Invalid Inst. Access & Instruction access error & An attempt was made to access an undefined address space. (This instruction address error is one that is reported by a specific error code other than " 03400000 " and " 03460000 ".) \\
\hline 10 & EC=03460000 & Inst. Access Protection & Instruction access protection error & Memory protection was violated by fetching an instruction. \\
\hline 11 & EC=03600000 & Data Page Fault & Data access page fault & Data in a page not listed in the page table was fetched. \\
\hline 12 & EC=03620000 & Invalid Data Access & Data access error & An attempt was made to access an undefined address space. (This data address error is one that is reported by a specific error code other than "03600000" and "03660000".) \\
\hline 13 & EC=03660000 & Data Access Protection & Data access protection error & Memory protection was violated by fetching data. \\
\hline 14 & EC=03820000 & Memory Error & Memory error & A memory error was detected by hardware. \\
\hline 15 & \(\mathrm{EC}=038 \mathrm{a} 0000\) & Memory Access Error & Memory access error & A memory access error was detected by hardware. \\
\hline 16 & \(\mathrm{EC}=038 \mathrm{~b} 0000\) & Internal Bus Parity & Internal-bus parity error & A parity error was detected on the internal bus by hardware. \\
\hline 17 & \(\mathrm{EC}=038 \mathrm{c} 0000\) & System Bus Parity & System-bus parity error & A parity error was detected on the system bus by hardware. \\
\hline 18 & EC=038f0000 & Undefined Machine Check & Undefined machine check & An undefined hardware error was detected. \\
\hline 19 & EC=07394720 & Invalid Interrupt Panic & Invalid interrupt generated successively (10 times) & An invalid interrupt was generated 10 times successively. \\
\hline 20 & EC=05700000 & System Error & CPMS error & A consistency error was detected during the execution of CPMS. \\
\hline 21 & EC=0d810000 & BPU Error & BPU miscalculation & A miscalculation by the BPU was detected by the CPMS. \\
\hline
\end{tabular}
(9) System down -- kernel trap

This type of error is reported when an internal irrationality in the CPMS is detected during the execution of the CPMS.
The table below shows the general format of error messages for kernel traps and describes each format element.

Table 4-28 Kernel Trap Message Format
```

%CPMS-F-xxxx-000A SITE=xxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=05800000 System down (Kernel trap)

```


```

LINE =xxxxxxxx

```


\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Description } \\
\hline FILE & The file name of the CPMS's internal file in which the irrationality was detected. \\
\hline LINE & The place in the CPMS's internal file at which the irrationality was detected. \\
\hline ERROR & The conditional expression that caused the irrationality. \\
\hline
\end{tabular}
(10) System down -- built-in subroutine error

This type of error is reported when an error making further processing impossible is detected by the CPMS during the execution of a built-in subroutine.
The table below shows the general format of error messages for built-in subroutine errors and describes each format element.

Table 4-29 System Down (Built-in Subroutine Error) Message Format
```

%CPMS-F-SOFT-000B SITE=xxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=xxxxxxxx ULSUB down (subtitle)

| NEST $=x x x x x x x x$ | POINT $=x \times x \times x x x x$ | ENTRY $=\mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{x} \times$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PC = xxxxxxxx | EXPEV $=x \times x \times x \times x$ x | FADR = xxxxxxxx SR | $=\mathrm{xxxxxxxx}$ |  |
| PR = xxxxxxxx | SP = xxxxxxxx | GBR = xxxxxxxx MACH |  | MACL $=x \times x x x x x x$ |
| R0 = xxxxxxxx | R1 = xxxxxxxx | R2 = xxxxxxxx R3 | $=\mathrm{xxxxxxxx}$ | R4 = xxxxxxxx |
| R5 = xxxxxxxx | R6 = xxxxxxxx | R7 =xxxxxxxx R8 | $=\mathrm{xxxxxxxx}$ | R9 = xxxxxxxx |
| R10 = xxxxxxxx | R11 = xxxxxxxx | R12 =xxxxxxxx R13 | $=\mathrm{xxxxxxxx}$ | R14 = xxxxxxxx |
| R15 = xxxxxxxx | FPSCR=xxxxxxx | FPUL = xxxxxxxx |  |  |
| INST = xxxxxxxx | Xxxxxxxx $\mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{x}$ |  | xxxxxxx x | mxxxx xxxxxxx |
| ( $\mathrm{PC}=) \mathrm{xxxxxxxx}$ | Xxxxxxxx $\mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{x}$ |  | xxxxxxxx x | xxxxx $\mathrm{x} x \times x \mathrm{xx} \times$ |
| STACK= $\mathrm{x} \times \mathrm{xx} \times \mathrm{xxx}$ |  |  | xxxxxxxx x | exxxxx xxxxxxx |
| $(\mathrm{SP}=) \mathrm{xxxxxxxx}$ |  |  | xxxxxxxx XX | XXXXXX XXXXXXXX |
| PC = xxxxxxxx | _) |  |  |  |
| $\mathrm{FADR}=\mathrm{xxxxxxxx}$ | _) |  |  |  |

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{\(\quad\) Description } \\
\hline EC & Error code (see Table 4-30). \\
\hline NEST & The number of calls made to the same built-in subroutine during its execution. \\
\hline POINT & The point number of a point at which the built-in subroutine was integrated. \\
\hline ENTRY & The entry number of an entry in the built-in subroutine. \\
\hline PC & The content of the program counter. \\
\hline EXPEV & \begin{tabular}{l}
The content of the exception code register, which is a 32-bit register and identifies the cause of data \\
access and alignment exceptions.
\end{tabular} \\
\hline FADR & Fault address \\
\hline SR & Status register, which identifies the status of the processor. \\
\hline EXECD & The instruction that encountered the error during its execution. \\
\hline PR & \begin{tabular}{l}
The content of the procedure register, which is used in calling a subroutine and stores the return address \\
to the calling routine.
\end{tabular} \\
\hline SP & The content of the stack pointer -- the register R15 is used as the stack pointer. \\
\hline GBR & \begin{tabular}{l}
The content of the global base register, which stores base addresses to be used in GBR-indirect \\
addressing with displacement and in indexed GBR-indirect addressing.
\end{tabular} \\
\hline MACH & \begin{tabular}{l}
The content of the MAC register high, which saves the accumulated value of a MAC (Multiply and \\
Accumulate) instruction or the result of a MAC or a MUL instruction. When the result of a MAC \\
operation is a 64-bit value, this register contains the upper 32-bit value.
\end{tabular} \\
\hline MACL & \begin{tabular}{l}
The content of the MAC register low, which serves the same purpose as MACH. When the result of a \\
MAC operation is a 64-bit value, this register contains the lower 32-bit value. When the result of a \\
MAC operation is a 32-bit value, it contains the entire 32-bit value.
\end{tabular} \\
\hline FPSCR & The content of the floating-point status/control register. \\
\hline FPUL & \begin{tabular}{l}
The content of the floating-point communication register, a register via which data transfer is done \\
between general and floating-point registers.
\end{tabular} \\
\hline Rxx & The content of the general register numbered xx. \\
\hline INST & Eight instructions before and after the address pointed to by the PC. \\
\hline PC & Instruction at the address pointed to by the PC. \\
\hline SP & Eight long words of data before and after the address pointed to by the SP. \\
\hline PC & \begin{tabular}{l}
The content of the location pointed to by the SP (i.e., part of the stack content). \\
The content of the program counter. Information on the address value contained in the program counter \\
is presented, enclosed in parentheses. If the address value identifies a memory location in a program, \\
(name = program name type = program type [program component] raddr = relative address to the \\
beginning of the program)
\end{tabular} \\
\hline Fault address. Information on the fault address is presented, enclosed in parentheses. \\
\hline
\end{tabular}

Table 4-30 Error Codes, Subtitles, and Their Meanings (for Built-in Subroutine Errors)
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Error code & Subtitle & Brief description & Meaning \\
\hline 1 & \(\mathrm{EC}=03030000\) & Alignment Error & Alignment error & An instruction's operand was not aligned on word boundaries. \\
\hline 2 & \(\mathrm{EC}=03040000\) & Illegal Instruction & Illegal-instruction error & An attempt was made to execute an illegal instruction. \\
\hline 3 & \(\mathrm{EC}=03080000\) & Privileged Instruction & Privileged instruction violation & A privileged instruction, an instruction that may be executed only in system mode, was executed. \\
\hline 4 & \(\mathrm{EC}=03090000\) & Illegal Breakpoint & Illegal-breakpoint exception error & An instruction causing a breakpoint exception was executed. \\
\hline 5 & EC=030f0000 & Illegal Exception & Illegal exception & An undefined exception was reported. \\
\hline 6 & \(\mathrm{EC}=03380000\) & FP Unavailable & Floating-point unavailable & An attempt was made to execute an unavailable floating-point instruction during the execution of the built-in subroutine. \\
\hline 7 & \(\mathrm{EC}=03390000\) & FP System Down & Floating-point arithmetic error & An error was encountered during the execution of a floating-point arithmetic instruction. \\
\hline 8 & \(\mathrm{EC}=03400000\) & Instruction Page Fault & Instruction access page fault & An instruction in a page not listed in the page table was fetched. \\
\hline 9 & \(\mathrm{EC}=03420000\) & \begin{tabular}{l}
Invalid Inst. \\
Access
\end{tabular} & Instruction access error & An attempt was made to access an undefined address space. (This instruction address error is one that is reported by a specific error code other than " 03400000 " and " 03460000 ".) \\
\hline 10 & \(\mathrm{EC}=03460000\) & \begin{tabular}{l}
Inst. Access \\
Protection
\end{tabular} & Instruction access protection error & Memory protection was violated by fetching an instruction. \\
\hline 11 & \(\mathrm{EC}=03600000\) & Data Page Fault & Data access page fault & Data in a page not listed in the page table was fetched. \\
\hline 12 & \(\mathrm{EC}=03620000\) & Invalid Data Access & Data access error & An attempt was made to access an undefined address space. (This data address error is one that is reported by a specific error code other than "03600000" and "03660000".) \\
\hline 13 & \(\mathrm{EC}=03660000\) & Data Access Protection & Data access protection error & Memory protection was violated by fetching data. \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}
(11) System down -- built-in subroutine stoppage

This type of error is reported when a return value for a CPU stop request is returned from a built-in subroutine at the end of its execution.
The table below shows the general format of error messages for built-in subroutine stoppages and describes each format element.

Table 4-31 System Down (Built-in Subroutine Stoppage) Message Format
```

%CPMS-F-SOFT-000C SITE=xxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=05140000 System down (ULSUB stop)
NEST = xxxxxxxx POINT=xxxxxxxx
RET = xxxxxxxx RET0 = xxxxxxxx RET1 = xxxxxxxx RET2 = xxxxxxxx RET3 = xxxxxxxx
SUBFM=xxxxxxxx SUBSZ=xxxxxxxx SUBEC=xxxxxxxx
DAT0 = xxxxxxxx DAT1 = xxxxxxxx DAT2 =xxxxxxxx DAT3 = xxxxxxxx DAT4 = xxxxxxxx
DAT5 =xxxxxxxx DAT6 =xxxxxxxx DAT7 =xxxxxxxx DAT8 = xxxxxxxx DAT9 =xxxxxxxx
DAT10=xxxxxxxx DAT11=xxxxxxxx DAT12=xxxxxxxx DAT13=xxxxxxxx DAT14=xxxxxxxx
DAT15=xxxxxxxx DAT16=xxxxxxxx DAT17=xxxxxxxx DAT18=xxxxxxxx DAT19=xxxxxxxx
DAT20=xxxxxxxx DAT21=xxxxxxxx DAT22=xxxxxxxx DAT23=xxxxxxxx DAT24=xxxxxxxx
DAT25=xxxxxxxx DAT26=xxxxxxxx DAT27=xxxxxxxx DAT28=xxxxxxxx DAT29=xxxxxxxx
DAT30=xxxxxxxx DAT31=xxxxxxxx DAT32=xxxxxxxx DAT33=xxxxxxxx DAT34=xxxxxxxx
DAT35=xxxxxxxx DAT36=xxxxxxxx DAT37=xxxxxxxx DAT38=xxxxxxxx DAT39=xxxxxxxx
~

```
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Description } \\
\hline NEST & The number of calls made to the same built-in subroutine during its execution. \\
\hline POINT & The point number of a point at which the built-in subroutine was integrated. \\
\hline RET & Termination information for the built-in subroutine \\
\hline RETn & Termination information for the entries numbered 0 through n in the built-in subroutine \\
\hline SUBFM & The format type passed by argument to the built-in subroutine \\
\hline SUBSZ & The number of data bytes passed by argument to the built-in subroutine \\
\hline SUBEC & \begin{tabular}{l}
Sub Error Code, an error code which identifies the cause of a CPU stop that was detected \\
in the built-in subroutine.
\end{tabular} \\
\hline DATn & Data for the format type identified by SUBFM \\
\hline
\end{tabular}

\section*{(12) ADT error}

This type of error is reported when a specified access (R/W) is made to an address (trap) set by the user using the debugger.
The table below shows the general format of error messages for ADT errors and describes each format element.

Table 4-32 ADT Error Message Format
```

%CPMS-I-SOFT-000d SITE=xxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=05f00000 Program error (Address Detect Trap Error)
TN =xxxxxxxx PC = xxxxxxxx SR = xxxxxxxx PR = xxxxxxxx SP = xxxxxxxx
GBR = xxxxxxxx MACH = xxxxxxxx MACL = xxxxxxxx
R0 = xxxxxxxx R1 = xxxxxxxx R2 = xxxxxxxx R3 = xxxxxxxx R4 = xxxxxxxx
R5 =xxxxxxxx R6 = xxxxxxxx R7 =xxxxxxxx R8 =xxxxxxxx R9 =xxxxxxxx
R10 = xxxxxxxx R11 = xxxxxxxx R12 = xxxxxxxx R13 = xxxxxxxx R14 = xxxxxxxx
R15 = xxxxxxxx FPSCR=xxxxxxxx FPUL =xxxxxxxx
FR0 = x. xxxxxxE+xxx FR1 = x. xxxxxxE+xxx FR2 =x. xxxxxxE+xxx FR3 = x. xxxxxxE+xxx
FR4 =x. xxxxxxE+xxx FR5 = x. xxxxxxE+xxx FR6 =x. xxxxxxE+xxx FR7 = x. xxxxxxE+xxx
FR8 =x. xxxxxxE+xxx FR9 = x. xxxxxxE+xxx FR10 =x. xxxxxxE+xxx FR11 = x. xxxxxxE+xxx
FR12 =x. xxxxxxE+xxx FR13 = x. xxxxxxE+xxx FR14 =x. xxxxxxE+xxx FR15 = x. xxxxxxE+xxx
XF0 = x. xxxxxxE+xxx XF1 = x. xxxxxxE+xxx XF2 =x. xxxxxxE+xxx XF3 =x. xxxxxxE+xxx
XF4 =x. xxxxxxE+xxx XF5 =x. xxxxxxE+xxx XF6 =x. xxxxxxE+xxx XF7 =x. xxxxxxE+xxx
XF8 = x. xxxxxxE+xxx XF9 =x. xxxxxxE+xxx XF10 =x. xxxxxxE+xxx XF11 =x. xxxxxxE+xxx
XF12 =x. xxxxxxE+xxx XF13 =x. xxxxxxE+xxx XF14 =x. xxxxxxE+xxx XF15 =x. xxxxxxE +xxx
DR0 =x. xxxxxxE+xxx DR2 =x. xxxxxxE+xxx DR4 =x. xxxxxxE+xxx DR6 =x. xxxxxxE+xxx
DR8 =x. xxxxxxE+xxx DR10 =x. xxxxxxE+xxx DR12 =x. xxxxxxE+xxx DR14 =x. xxxxxxE+xxx
XD0 =x. xxxxxxE+xxx XD2 =x. xxxxxxE+xxx XD4 =x. xxxxxxE+xxx XD6 = x. xxxxxxE+xxx
XD8 =x. xxxxxxE+xxx XD10 =x. xxxxxxE+xxx XD12 =x. xxxxxxE+xxx XD14 =x. xxxxxxE+xxx
BARA =xxxxxxxx BAMRA=xxxxxxxx BBRA =xxxxxxxx BASRA=xxxxxxxx
BARB = xxxxxxxx BAMRB=xxxxxxxx BBRB =xxxxxxxx BASRB=xxxxxxxx BRCR = xxxxxxxx

```

```

    xxxxxxxx (PC =) xxxxxxxx xxxxxxxx
    PC = xxxxxxxx(____)
PR = xxxxxxxx(
)

```


\section*{4 ERROR LOG INFORMATION}

\section*{(13) Memory error}

This type of error is reported when a serious error (2-bit error by memory ECC) is detected in relation to memory.
The table below shows the general format of error messages for memory-related serious errors and describes each format element.

\section*{Table 4-33 Memory Error Message Format}
```

%CPMS-E-HARD-000e SITE=xxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=03820000 Memory Error
TN =xxxxxxxx PC = xxxxxxxx EXPEV=xxxxxxxx SR =xxxxxxxx
PR = xxxxxxxx SP = xxxxxxxx GBR =xxxxxxxx MACH = xxxxxxxx MACL =xxxxxxxx
R0 = xxxxxxxx R1 =xxxxxxxx R2 =xxxxxxxx R3 =xxxxxxxx R4 = xxxxxxxx
R5 =xxxxxxxx R6 =xxxxxxxx R7 =xxxxxxxx R8 =xxxxxxxx R9 =xxxxxxxx
R10 =xxxxxxxx R11 =xxxxxxxx R12 =xxxxxxxx R13 =xxxxxxxx R14 =xxxxxxxx
R15 =xxxxxxxx FPSCR=xxxxxxxx FPUL =xxxxxxxx
FR0 = x. xxxxxxE+xxx FR1 = x. xxxxxxE+xxx FR2 = x. xxxxxxE+xxx FR3 = x. xxxxxxE+xxx
FR4 =x. xxxxxxE+xxx FR5 = x. xxxxxxE+xxx FR6 =x. xxxxxxE+ xxx FR4 =x. xxxxxxE+xxx
FR8 =x. xxxxxxE+xxx FR9 =x. xxxxxxE+xxx FR10 =x. xxxxxxE+xxx FR11 =x. xxxxxxE+xxx
FR12 = x. xxxxxxE+xxx FR13 = x. xxxxxxE+xxx FR14 =x. xxxxxxE+ xxx FR15 =x. xxxxxxE+xxx
XF0 =x. xxxxxxE+xxx XF1 = x. xxxxxxE+xxx XF2 =x. xxxxxxE+xxx XF3 =x. xxxxxxE+xxx
XF4 =x. xxxxxxE+xxx XF5 =x. xxxxxxE+xxx XF6 =x. xxxxxxE+xxx XF7 =x. xxxxxxE+xxx
XF8 =x. xxxxxxE+xxx XF9 = x. xxxxxxE+xxx XF10 =x. xxxxxxE+xxx XF11 =x. xxxxxxE+xxx
XF12 =x. xxxxxxE+xxx XF13 =x. xxxxxxE+xxx XF14 =x. xxxxxxE+xxx XF14 =x. xxxxxxE+xxx

```

```

    xxxxxxxx (PC =) xxxxxxxx xxxxxxxx
    HERST =xxxxxxxx MERRADR = xxxxxxxx MERRDAT =xxxxxxxx MSYNDR =xxxxxxxx
MHPMCLG = xxxxxxxx MLPMCLG =xxxxxxxx MECC =xxxxxxxx MSW2 =50000000
STATNP =xxxxxxxx STATCP =xxxxxxxx STATSLV =xxxxxxxx RERRLOG =xxxxxxxx
RERRADR =xxxxxxxx RERRDAT =xxxxxxxx RERRMST =xxxxxxxx RERRCMD =xxxxxxxx
MST_TYPE=xxxxxxxx MST_INFO=xxxxxxxx
PC =xxxxxxxx(___)
PR =xxxxxxxx(

```


\section*{4 ERROR LOG INFORMATION}

\section*{4 ERROR LOG INFORMATION}

\begin{tabular}{|c|c|c|c|c|}
\hline Item & \multicolumn{4}{|c|}{Description} \\
\hline \multirow[t]{17}{*}{\begin{tabular}{l}
MSW2 \\
(continued from preceding page)
\end{tabular}} & & & & \\
\hline & Bit no. & Bit name & Read-in value & Meaning \\
\hline & 11 to 15 & Reserve & Always 0 . & - \\
\hline & 16 & RAPE & \begin{tabular}{l}
0: Error not detected. \\
1: Error detected.
\end{tabular} & Indicates whether or not a receivedaddress parity error was detected (when the CMU was master). \\
\hline & 17 & AAPE & 0: Error not
\(\quad\) detected.
1: Error detected. & Indicates whether or not an assertedaddress parity error was detected (when the CMU was target). \\
\hline & 18 & RDPE & \begin{tabular}{l}
0: Error not detected. \\
1: Error detected.
\end{tabular} & Indicates whether or not a received-data parity error was detected (during master write or target read). \\
\hline & 19 & ADPE & \begin{tabular}{l}
0: Error not detected. \\
1: Error detected.
\end{tabular} & Indicates whether or not an asserted-data parity error was detected (during master write or target read). \\
\hline & 20 & ATE & \begin{tabular}{l}
0: Error not detected. \\
1: Error detected.
\end{tabular} & Indicates whether or not an addresscycle timeout error was detected. (Applicable only to the master.) \\
\hline & 21 & TTE & \begin{tabular}{l}
0: Error not detected. \\
1: Error detected.
\end{tabular} & Indicates whether or not a transaction timeout error was detected. (Applicable only to the master.) \\
\hline & 22 & BBTE & \begin{tabular}{l}
0: Error not detected. \\
1: Error detected.
\end{tabular} & Indicates whether or not a "BGACK busy" timeout error was detected. (Applicable only to the CPU.) \\
\hline & 23 & MSAW & \[
\begin{aligned}
& \hline \text { 0: Error not } \\
& \text { detected. } \\
& \text { 1: Error detected. } \\
& \hline
\end{aligned}
\] & Indicates whether or not a misalignmentaccess error was detected. \\
\hline & 24 & UDTW & \begin{tabular}{l}
0: Error not detected. \\
1: Error detected.
\end{tabular} & Indicates whether or not an unsupportedtransaction error was detected. \\
\hline & 25 & WPAW & \begin{tabular}{l}
0: Error not detected. \\
1: Error detected.
\end{tabular} & Indicates whether or not a writeprotected area write error was detected. \\
\hline & 26 & RERTR & \begin{tabular}{l}
0: Error not detected. \\
1: Error detected.
\end{tabular} & Indicates whether or not a received error transaction was detected. (Applicable only to the master.) \\
\hline & 27 & AERTR & \begin{tabular}{l}
0: Error not detected. \\
1: Error detected.
\end{tabular} & Indicates whether or not an asserted error transaction was detected. \\
\hline & 28 & BRTOE & \begin{tabular}{l}
0: Error not detected. \\
1: Error detected.
\end{tabular} & Indicates whether or not a bus request timeout was generated. (Applicable only to the master.) \\
\hline & 29 to 31 & Reserve & Always 0 . & - \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}

\begin{tabular}{|c|c|c|c|c|}
\hline Item & \multicolumn{4}{|c|}{Description} \\
\hline \multirow[t]{8}{*}{RERRLOG (continued from preceding page)} & \multicolumn{4}{|l|}{} \\
\hline & Bit no. & Bit name & Read-in value & Meaning \\
\hline & 26 & RTA & \begin{tabular}{l}
0: Not received. \\
1: Received.
\end{tabular} & Indicates whether or not, when the CMU was bus master, an error transaction was received (and the bus operation was ended). \\
\hline & 27 & TRNSTO & \begin{tabular}{l}
0 : Not detected. \\
1: Detected.
\end{tabular} & Indicates whether or not, when the CMU was bus master, a transaction timeout was detected (and the bus operation was ended). \\
\hline & 28 & MAPE & \begin{tabular}{l}
0: Not received. \\
1: Received.
\end{tabular} & Indicates whether or not, when the CMU was bus master, an address parity error notification was received. \\
\hline & 29 & MRDPE & \begin{tabular}{l}
0 : Not detected. \\
1: Detected.
\end{tabular} & Indicates whether or not, when the CMU was bus master, a read-data parity error was detected. \\
\hline & 30 & MA & \begin{tabular}{l}
0 : Not detected. \\
1: Detected.
\end{tabular} & Indicates whether or not, when the CMU was bus master, an address-cycle timeout was detected (and the bus operation was ended). \\
\hline & 31 & BRQTO & \begin{tabular}{l}
0 : Not detected. \\
1: Detected.
\end{tabular} & Indicates whether or not, when the CMU was bus master, a bus-request timeout was detected (and the bus operation was ended). \\
\hline \multirow[t]{5}{*}{RERRADR} & \multicolumn{3}{|l|}{0 2 3} & 31 \\
\hline & \multicolumn{2}{|l|}{\[
0-0
\]} & \multicolumn{2}{|r|}{ADR} \\
\hline & Bit no. & Bit name & Read-in value & Meaning \\
\hline & 0 to 2 & - & Always 0 . & - \\
\hline & 3 to 31 & ADR & Specified value & Is the bus address at which the highspeed bus/S10 bus error occurred. \\
\hline \multirow[t]{4}{*}{RERRDAT} & \multicolumn{3}{|l|}{0} & 31 \\
\hline & \multicolumn{4}{|c|}{DAT} \\
\hline & Bit no. & Bit name & Read-in value & Meaning \\
\hline & 0 to 31 & - & Specified value & Is the bus data that encountered the high-speed bus/S10 bus error. \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}

Table 4-34 The Set Values of MST_TYPE and MST_INFO
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{c}
Set value of \\
MST_TYPE
\end{tabular} & \multicolumn{1}{|c|}{ Type of master } & \multicolumn{1}{c|}{ Set value of MST_INFO } \\
\hline \(0 \times 1\) & CMU & \begin{tabular}{l}
0x00000055: Denotes CMU master. \\
\(0 \times F F F F F F F F:\) Master unidentifiable.
\end{tabular} \\
\hline \(0 \times 2\) & \begin{tabular}{l}
I/O device under PCI \\
bus \\
\(0 x 00000001:\) Denotes LANCE(CH1) \\
master.
\end{tabular} \\
\begin{tabular}{c}
0x000000002: Denotes LANCE(CH2) \\
master. \\
0xFFFFFFFF: Master unidentifiable.
\end{tabular} \\
\hline \(0 \times 3\) & \begin{tabular}{l}
I/O module under \\
R700 (S10) bus
\end{tabular} & Master slot number (8 for the CPU) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Description } \\
\hline PC & \begin{tabular}{l}
The content of the program counter. Information on the address value contained in the \\
program counter is presented, enclosed in parentheses. If the address value identifies a \\
memory location in a program, the following information is presented: \\
(name = program name type = program type [program component] raddr = relative \\
address to the beginning of the program)
\end{tabular} \\
\hline PR & \begin{tabular}{l}
The content of the procedure register. Information on the address value contained in the \\
procedure register is presented, enclosed in parentheses. If the address value identifies a \\
memory location in a program, the following information is presented: \\
(name = program name type = program type [program component] raddr = relative \\
address to the beginning of the program)
\end{tabular} \\
\hline
\end{tabular}

\section*{4 ERROR LOG INFORMATION}
(14) System bus error

This type of error is reported when a serious error is detected on the system bus.
The table below shows the general format of error messages for system bus errors and describes each format element.

Table 4-35 System Bus Error Message Format
```

%CPMS-E-HARD-000f SITE=xxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm:ss LOG=xxx
EC=xxxxxxxx System Bus Error (Subtitle)
SLOT =xxxxxxxx MSW0 =xxxxxxxx MSW1 =xxxxxxxx
HERST =xxxxxxxx DIRNP =xxxxxxxx DIRCP =xxxxxxxx STATNP =xxxxxxxx
ENNP = xxxxxxxx STATCP =xxxxxxxx ENCP =xxxxxxxx LOG = xxxxxxxx
ADR =xxxxxxxx DAT =xxxxxxxx MST =xxxxxxxx CMD =xxxxxxxx
STATSLV =xxxxxxxx ENSLV =xxxxxxxx RBUSMNT =xxxxxxxx

```


\section*{4 ERROR LOG INFORMATION}

\section*{4 ERROR LOG INFORMATION}

Table 4-36 Error Codes
\begin{tabular}{|c|l|l|l|}
\hline No. & \multicolumn{1}{|c|}{ Error code } & \multicolumn{1}{|c|}{ Subtitle } & \multicolumn{1}{c|}{ Meaning } \\
\hline 1 & EC=03b80001 & System Bus Error (CPU Master) & \begin{tabular}{l}
When it was master, the CPU went down due to \\
the occurrence of a serious error on the system bus.
\end{tabular} \\
\hline 2 & EC=03b80002 & System Bus Error (CPU Target) & \begin{tabular}{l}
When the CPU was target, a serious error was \\
detected on the system bus.
\end{tabular} \\
\hline 3 & EC=03b70000 & \begin{tabular}{l}
System Bus Error \\
(Master/Target Abort)
\end{tabular} & \begin{tabular}{l}
When the CPU was master, a master or a target \\
abort was detected on the system bus.
\end{tabular} \\
\hline
\end{tabular}

\section*{ERROR LOG INFORMATION}

\section*{(15) Other error}

This type of error is one that is output by the user. The ECs and their meanings for other errors are defined by the user.

Table 4-37 Other-Error Message Format
\% xxxx-x-xxxx-xxxx SITE=xxxxxxxxxxxxxx RC=xxxxxxxx yyyy/mm/dd hh:mm: ss
LOG \(=x x x\)
EC=xxxxxxxx

0 x 00000010 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx `xxxxxxxxxxxxxxxx
0 x 00000020 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx `xxxxxxxxxxxxxxxx
0 x 00000030 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx `xxxxxxxxxxxxxxxx

\(0 x 00000050\) xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx `xxxxxxxxxxxxxxx

~

RC: Return Code

\section*{EC: Error Code}

Title: Is presented in the output format shown below. If the data for the title is unrecognizable by the CPMS, the title is presented in hexadecimal format.

If the Error Code format is abnormal, the corresponding portion of the title is presented in hexadecimal format.

\subsection*{4.4.4 Reading the DHP trace information}

DHP trace information is displayed in the following format:
- The DHP facility displays trace information in reverse chronological order.
- DHP trace information is classified into three categories of task, idle, and OS, based on DISPATCH_E events.
- For each DISPATCH_E event, DATA1 values in the range \(0 x 00000001\) to \(0 x 0000012 \mathrm{C}\) are the task numbers of tasks executed.
- Time information is displayed in seconds and fractions of a second, up to six decimal places (i.e., microseconds).
- For information on the one-to-one correspondence between DHP events and data pieces, see Table 4-38.

\section*{<Example of DHP display>}

Shown below is an example of a DHP display. Under the heading "Operation explanation" is explained what task was executed and what the OS did for tasks.

Table 4-38 DHP Codes (1/4)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code value & \[
\begin{gathered}
\hline \text { DHP display } \\
\text { name }
\end{gathered}
\] & Trace point & DATA1 & DATA2 & DATA3 & DATA4 & DATA5 \\
\hline 0x010001 & TRACE ON & Start of tracing & & & & & \\
\hline 0x010002 & TRACE_OFF & Stop of tracing & & & & & \\
\hline \(0 \times 010003\) & TRACE _TBU & Time recording & old tbu (Time Base Upper) & new tbu (Time Base Upper) & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code value & \[
\begin{gathered}
\hline \text { DHP display } \\
\text { name }
\end{gathered}
\] & Trace point & DATA1 & DATA2 & DATA3 & DATA4 & DATA5 \\
\hline 0x020001 & WAKEUP & WAKEUP processing & WAKEUP address & & & & \\
\hline 0x020002 & SLEEP & SLEEP event & SLEEP address & pri (priority level) & & & \\
\hline 0x020003 & DISPATCH & Before thread_invoke processing & tn (task number) & pri (priority level) & cont (CPMS stack information) & & \\
\hline 0x020083 & DISPATCH E & After thread invoke processing & tn (task number) & pri (priority level) & cont (CPMS stack information) & & \\
\hline 0x020004 & RUNQ & RUNQ connection & tn (task number) & & & & \\
\hline 0x020005 & IDLE & IDLE processing & & & & & \\
\hline \(0 \times 020006\) & TASK PRI & Priority level control & tn (task number) & pri (priority level) & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code value & DHP display
name & Trace point & DATA1 & DATA2 & DATA3 & DATA4 & DATA5 \\
\hline 0x030001 & ULSUBLN & Before built-in subroutine linking & Calls to the same built-in subroutine during its execution & Built-in subroutine point number & & & \\
\hline 0x030081 & ULSUBLN_E & After built-in subroutine linking & Calls to the same built-in subroutine during its execution & Built-in subroutine point number & Built-in subroutine return value & & \\
\hline 0x030002 & ELSETK & elset processing & Error type & Error class & Error format & Error code & \\
\hline 0x030003 & IOERR & I/O error handling & uno (unit number) & Device number & Device address & Detail error code & \\
\hline \(0 \times 030004\) & PRGERR & Program error handling & tn (task number) & Fault address & Program counter & expevt register & \\
\hline 0x030005 & WDTERR & WDT error handling & time & & & & \\
\hline 0x030006 & PIOERR & PI/O error handling & slot & & & & \\
\hline \(0 \times 030007\) & MODERR & Module error handling & Error code & Slot number & HERST register & INTST register & \\
\hline 0x030008 & KERN PANIC & Panic handling & tn (task number) & Fault address & Program counter & Extension error code & \\
\hline 0x030009 & ULSUB_ERR & Built-in subroutine error handling & Built-in subroutine point
number & & & & \\
\hline 0x03000a & ASSERT & Assertion panic handling & Component in which the error occurred & Line in which the error occurred & Test condition & & \\
\hline 0x03000b & CPUSTOP & CPU stoppage handling & Calls to the same built-in subroutine during its execution & Built-in subroutine point number & Built-in subroutine return value & & \\
\hline
\end{tabular}
- CPMS processing -- startup and stop processing
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Code value & \begin{tabular}{c}
DHP display \\
name
\end{tabular} & \multicolumn{1}{c|}{ Trace point } & DATA1 & DATA2 & DATA3 & DATA4 \\
\hline \(0 \times 040001\) & SETUP_MAIN & Startup processing & Always 1 & & & \\
\hline \(0 \times 40002\) & HDUTL_ STOP & Stop processing & & & \\
\hline \(0 \times 40003\) & HDUTL_RSUM & Restart processing & & & \\
\hline \(0 \times 40004\) & HDUTL_ERR & ERROR handling & & & \\
\hline
\end{tabular}

\footnotetext{
\begin{tabular}{l}
- CPMS processing -- exception handling \\
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Code value & \(\begin{array}{c}\text { DHP display } \\
\text { name }\end{array}\) & \multicolumn{1}{|c|}{ Trace point } & \multicolumn{1}{|c|}{ DATA1 } & DATA2 & DATA3 & DATA4 \\
\hline \(0 \times 050001\) & EXCEPTION & Exception handling & Exception type & & \\
\hline \(0 \times 050002\) & SLIH_SRES & System reset exception & NMI cause register & Program counter & & \\
\hline \(0 \times 050005\) & SLIH_SM & \(\begin{array}{l}\text { System management interrupt } \\
\text { exception }\end{array}\) & MSW register & & \\
\hline \(0 \times 050007\) & SLIH_HERR & Serious-error interrupt handling & Serious-error cause register & & \\
\hline
\end{tabular} \\
\hline
\end{tabular}
}

Table 4-38 DHP Codes (2/4)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code value & DHP display name & Trace point & DATA1 & DATA2 & DATA3 & DATA4 & DATA5 \\
\hline 0x100000 & NOSYS & Undefined macro issued & & & & & \\
\hline 0x100001 & QUEUE & queue macro issued & tn (task number) & fact (start factor) & & & \\
\hline 0x100002 & RLEAS & rleas macro issued & tn (task number) & & & & \\
\hline 0x100003 & SFACT & sfact macro issued & tn (task number) & fact (start factor) & & & \\
\hline 0x100004 & ABORT & abort macro issued & tn (task number) & & & & \\
\hline 0x100005 & SUSP & susp macro issued & tn (task number) & & & & \\
\hline \(0 \times 100006\) & RSUM & rsum macro issued & tn (task number) & & & & \\
\hline 0x100007 & CTIME & ctime macro issued & tn (task number) & fact (start factor) & & & \\
\hline 0x100008 & WAIT & wait macro issued & ecb (ECB address) & & & & \\
\hline 0x100009 & POST & post macro issued & ecb (ECB address) & pcode (post code) & & & \\
\hline 0x10000a & TIMER & timer macro issued & id (event type) & tn (task number) & fact (start factor) & t (time period or point in time) & cyt (cycle time) \\
\hline 0x10000b & DELAY & delay macro issued & t (milliseconds) & & & & \\
\hline 0x10000c & STIME & stime macro issued & year (year) & month (month) & day (day) & msec (milliseconds) & \\
\hline 0x10000d & CHAP & chap macro issued & tn (task number) & chgp (priority level) & & & \\
\hline 0x10000e & RSERV & rserv macro issued & n (the number of shared resources) & para1 & para2 & para3 & para4 \\
\hline 0x10000f & FREE & free macro issued & n (the number of shared resources) & para 1 & para2 & para3 & para4 \\
\hline 0x100010 & PRSERV & prserv macro issued & n (the number of shared resources) & para1 & para2 & para3 & para4 \\
\hline 0x100011 & PFREE & pfree macro issued & n (the number of shared resources) & para 1 & para2 & para3 & para4 \\
\hline 0x100012 & GFACT & Before or after the issuance of gfact macro & fact (start factor) & & & & \\
\hline 0x100013 & GTIME & gtime macro issued & time (time t address) & & & & \\
\hline 0x100014 & EXIT & exit macro issued & & & & & \\
\hline 0x100015 & ASUSP & asusp macro issued & & & & & \\
\hline 0x100016 & ARSUM & arsum macro issued & & & & & \\
\hline 0x10001e & DHPCTL & dhpctl macro issued & cmd (command) & id (trace range) & Trace info output address & & \\
\hline 0x10001f & DHPREAD & dhpread macro issued & Logical address & size & & & \\
\hline 0x100023 & CHML & chml macro issued & Logical address & paral & para2 & para3 & para4 \\
\hline 0x100056 & CFREAD & Flash-memory read & Sector number & size & Buffer address & & \\
\hline \(0 \times 100057\) & CFWRITE & Flash-memory write & Sector number & size & Buffer address & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code value & \[
\begin{gathered}
\hline \text { DHP display } \\
\text { name } \\
\hline
\end{gathered}
\] & Trace point & DATA1 & DATA2 & DATA3 & DATA4 & DATA5 \\
\hline 0x200004 & SETTCB & settcb macro issued & ID number of the task table to be registered & The number of tasks to be registered & Task management table address & & \\
\hline 0x200005 & CLRTCB & clrtcb macro issued & tn (task number) & & & & \\
\hline 0x200006 & ADTSET & adtset macro issued & ADT mode (1: Set; 2: Delete) & Set channel & Set address & Address mask pattern & Mode (1: Read; 2: Write; 3: Read/write) \\
\hline 0x200007 & ADTREAD & adtread macro issued & Register storage area address & ADTB storage area address & & & \\
\hline 0x200008 & SETBRK & setbrk macro issued & Mode (1: Set; 2: Delete) & Breakpoint address & Instruction code address & & \\
\hline 0x200009 & GETBRK & getbrk macro issued & Mode (0: Usual read; 1: Break test-read) & Breakpoint read destination address & & & \\
\hline 0x20000a & GOTASK & gotask macro issued & & & & & \\
\hline 0x20000c & REGSET & Task register setting & Register & Data address & & & \\
\hline
\end{tabular}

Table 4-38 DHP Codes (3/4)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code value & DHP display
name & Trace point & DATA1 & DATA2 & DATA3 & DATA4 & DATA5 \\
\hline 0x300001 & SOCKET & SOCKET macro issued & uno (unit number) & Type & Protocol & Work area & Work area \\
\hline \(0 \times 300002\) & BIND & BIND macro issued & Socket ID & Port number & IP address & Work area & Work area \\
\hline 0x300003 & LISTEN & LISTEN macro issued & Socket ID & Maximum number of waits for connection & Work area & Work area & Work area \\
\hline \(0 \times 300004\) & ACCEPT & ACCEPT macro issued & Socket ID & Address info pointer & Address info length & Work area & Work area \\
\hline \(0 \times 300005\) & CONNECT & CONNECT macro issued & Socket ID & Port number & IP address & Work area & Work area \\
\hline 0x300006 & SEND & SEND macro issued & Socket ID & Buffer address & Upper word: Data length Lower word: Transmission flags & Work area & Work area \\
\hline 0x300007 & SENDTO & SENDTO macro issued & Socket ID & Upper word: Data length Lower word: Transmission flags & Port number & IP address & Internal task info \\
\hline 0x300008 & RECV & RECV macro issued & Socket ID & Buffer address & Upper word: Data length Lower word: Reception flags & Work area & Work area \\
\hline 0x300009 & RECVFROM & RECVFROM macro issued & Socket ID & Buffer address & Upper word: Data length Lower word: Reception flags & Address info pointer & Address info length \\
\hline 0x30000a & SETSOCKOPT & SETSOCKOPT macro issued & Socket ID & Level & Options & Option info address & Option info length address \\
\hline 0x30000b & GETSOCKOPT & GETSOCKOPT macro & Socket ID & Level & Options & Option info address & Option info length address \\
\hline 0x30000c & SHUTDOWN & SHUTDOWN macro issued & Socket ID & Socket shutdown method & Work area & Work area & Work area \\
\hline \(0 \times 30000 \mathrm{~d}\) & NET END & Macro abend & Socket ID & Error number & Work area & Work area & Work area \\
\hline \(0 \times 300010\) & NET CTLR & IOCTL macro issued & Unit number and slot number & Control info & Control info & Control info & Control info \\
\hline 0x300010 & NET_CTLR & Remote CPU control
accepted & Station number and command & Frame length and transmission no. & Controlled type and data length & Data address & Work area \\
\hline 0x300011 & NET_START & NCP-F I/O start & Socket ID & Task info & Command code and socket status & Start info 1 & Start info 2 \\
\hline 0x300011 & NET_START & Built-in LANCE/LANCP transmission & Socket ID+ETHER_TYPE & Packet header info & & & \\
\hline 0×300012 & NET_TERM & NCP-F termination interrupt & Socket ID & Task info & Response info & Status code & Interrupt info \\
\hline 0x300012 & NET_TERM & Built-in LANCE/LANCE termination interrupt & Socket ID+FFFF & LANCE descriptor info (TMD0,
TMD1, TMD2, TMD3) & & & \\
\hline \(0 \times 300013\) & NET ATEN & NCP-F attention interrupt & Socket ID & Task info & Response info & Status code & Interrupt info \\
\hline 0x300013 & NET_ATEN & Built-in LANCE/LANCP reception & Socket ID+ETHER_TYPE & Packet header info & & & \\
\hline 0x300014 & NET STO & Software timeout & Socket ID & Task info & Start info & Start info & Start info \\
\hline \(0 \times 300015\) & NET SUB & Error detected & Error type & Error info & Error info & Error info & Error info \\
\hline
\end{tabular}

Table 4-38 DHP Codes (4/4)

\subsection*{4.5 Maintenance Commands}
```

<Name>
svelog -- output error log information.
<Form>
svelog [-u site] [-f format] [-logno] [+case] [-d fname] [-o fname]
one screenful of error log information
{p }
{-}
{\pmnl }
{n}
{no input }
{q }

```

\section*{<Description>}

The svelog command reads error log information from the error log buffer in the controller and outputs it. The following are the options usable in this command.
-u site: Specifies the site name of the site to be acted on. This option is defaulted to the site name specified in the RSSITE environment variable.
-f format: Selects one of the following output formats in which to output the error log information.
This option is defaulted to m .
s: Outputs the error information in short format.
m : Outputs all the error information.
1: Outputs the error information along with the DHP trace information.
-logno: Outputs the error log information whose log number is specified by logno.
+case: Specifies the number of log cases to be displayed. This option is defaulted to "all existing error log information", in which case the option displays it in reverse chronological order.
-d fname: Specifies a file in which to store the history of window operations (results of the operations). If the specified file is already existent, this option adds the new history data to the end of the existing file.
-o fname: Specifies a file in which to store the error \(\log\) information. If the specified file is already existent, this option deletes the existing file and creates a new file.

The display of the error log information can be controlled by using the following perusal commands:
p, no input: Each displays the next page.
-: Displays the previous page.
n : Displays the information, starting from the n -th line from the beginning of the file.
q : Exits the error \(\log\) display process.
<Usage precautions>
- The svelog command can be used only when the user task is in RUN or STOP state.
- If the \(\log\) number specified by -logno is greater than that of the latest error \(\log\) information, the logno option displays the latest error \(\log\) information.
- If both of the options -logno and +case are given, the +case option has priority.
- If the -f format option is omitted, \(m\) is assumed.
\(<\) Exit codes>
The svelog command returns one of the following exit codes at the end of its execution:
0 : Normal termination made.
1: Parameter error detected.
2: Communication error detected.
3: Signal received.
```

<Name>
svdhp -- display DHP trace information.
<Form>
svdhp [-u site] [+count] [-on|-off] [-d fname] [-o fname] [-f fname]
one screenful of DHP information
{p }
{-}
{\pmnl }
{n}
{no input }
{q }
<Description>

```

The svdhp command displays in reverse chronological order the DHP trace information that is stored in the DHP trace buffer inside the PCs. The following are the options usable in this command. -u site: Specifies the site name of the site to be acted on. This option is defaulted to the site name specified in the RSSITE environment variable.
+count: Displays only the trace information piece specified by count. This option is defaulted to "all existing trace information".
-on: Changes the DHP recording mode to "enable".
-off: Changes the DHP recording mode to "disable".
-d fname: Specifies a file in which to store the history of window operations (results of the operations). If the specified file is already existent, this option adds the new history data to the end of the existing file.
-o fname: Specifies a file in which to store the DHP display result. If the specified file is already existent, this option deletes the existing file and creates a new file.
-f fname: Specifies the file name of a DHP log input file. When specifying this file name, specify an S10V site name as the site name.

The following is an example program using dhpread:
<Example program>
```

\#include <cpms_dhp.h>
extern char dhp_g[4096];
main( ) {
long size;
size=4096;
dhpread(dhp_g, \&size);
}

```

The display of the DHP trace information can be controlled by using the following perusal commands:
p, no input: Each displays the next page.
- : Displays the previous page.
n : Displays the information, starting from the n -th line from the beginning of the file.
q: Exits the DHP display process.

The svdhp command presents the DHP trace information in the following output format:

(1) ID number of a DHP trace info display
(2) Time of tracing done:
\[
\begin{aligned}
& \frac{\mathrm{tt}}{\mathrm{t}} \cdot \frac{\mathrm{tttttt}}{\text { Seconds Microseconds }}
\end{aligned}
\]
(3) Trace point type
(4) Trace data (output in hexadecimal format)
(5) Task number
(6) Priority level
(7) Site name, or the file name when the -f option was given.

\section*{4}

ERROR LOG INFORMATION
\(<\) Usage precaution>
- When the -on or -off option is given, this command does not display any DHP trace information.
\(<\) Exit codes>
The svdhp command returns one of the following exit codes at the end of its execution:
0 : Normal termination made.
1: Parameter error detected.
2: Communication error detected.
3: Signal received.
<Name>
svcpunow -- display the CMU's load ratio.
<Form>
svcpunow [-u site] [-t second]

\section*{<Description>}

The svcpunow command obtains accumulated IDLE time and point-in-time information for a specified site (CMU), computes a load ratio from the obtained information, and displays the result.
Computation formula used:
PU load ratio \(=(\) measuring time - IDLE time \() /\) measuring time
The following are the options usable in this command.
-u site: Specifies the site name of the site to be acted on. This option is defaulted to the site name specified in the RSSITE environment variable.
-t second: Specifies a measuring time in seconds (in the range 1 to 3600) for use in computing a PU load ratio. This option is defaulted to 1 (second).

\section*{\(<\) Usage precaution>}

The svcpunow command cannot be input if another svcpunow command is already executing.

\section*{\(<\) Exit codes>}

The svcpunow command returns one of the following exit codes at the end of its execution:
0 : Normal termination made.
1: Abnormal termination made.
2: Communication error detected.
3: Signal received.
<Output format>
The svcpunow command uses the output format exemplified below.
```

2002/04/24 17:57:33 SITE=pcs01b_cp ** 1 second wait **
CPU(pcs01b_cp) load ratio = 0.06%

```
```

<Name>
svtimex -- display task utilization information.
<Form>
svtimex [-u site] [tn] [-t second]
[tname]

```

\section*{<Description>}

The svtimex command displays the following task utilization information: 1) the number of times a specified task was executed during a specified measuring time, 2) the accumulated execution time during that time period, and 3) the point in time at which the svtimex command is executed. The following are the options usable in this command.
-u site: Specifies the site name of the site to be acted on. This option is defaulted to the site name specified in the RSSITE environment variable.
tn : Specifies a task number in the range 1 to 255 , which must be expressed either in decimal or hexadecimal (prefixed with " 0 x ") format.
tname: Specifies a task name.
If neither of the tn and tname options is given, this command enters conversational mode and prompts you to enter a measuring time. Enter the desired measuring time value in the range 1 to 86400 . Then, the command prompts you to enter task names or task numbers. You can enter up to 10 task names or numbers. Then, when you execute the svtimex command, just press the [Enter] key at the prompt.
-t second: Specifies a task utilization measuring time in seconds (in the range 1 to 86400). This option is defaulted to 1 (second).
<Usage precautions>
- If the -t option is entered to specify a measuring time, also enter the tn (task number) or tname (task name) option.
- The svtimex command is not accepted if another svtimex command is already executing.
- The tn and tname options may not be used in combination (i.e., they are mutually exclusive). In conversational mode, up to 10 task names or task numbers may be entered.
<Exit codes>
The svtimex command returns one of the following exit codes at the end of its execution:
0 : Normal termination made.
1: Abnormal termination made.
2: Communication error detected.
3: Signal received.

\section*{<Output format>}

The svtimex command presents task utilization information in the following output format:

\footnotetext{
2002/04/24 18:02:18 SITE=pcs01b_cp ** 1 second wait **
sist(255) load ratio \(=0.00 \%\) execute count \(=0\) total time \(=0.000\) sec average time \(=0.000 \mathrm{sec}\)
}

THIS PAGE INTENTIONALLY LEFT BLANK.

\section*{5 APPENDIX}

\section*{5 APPENDIX}

\subsection*{5.1 Tool Error Messages}

\subsection*{5.1.1 Error messages from the LADDER CHART SYSTEM}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{c|}{ Required action } \\
\hline Specify the key code that is not multidefined. & Use a non-duplicated key code. \\
\hline \begin{tabular}{l}
This key code cannot be used. Use numeric or \\
alphabet.
\end{tabular} & Use the correct key code. \\
\hline <File name> Cannnot loaded this library. & \begin{tabular}{l}
Restart the LADDER CHART SYSTEM and try it again. If the \\
same error recurs, reinstall the LADDER CHART SYSTEM.
\end{tabular} \\
\hline Input number. & Enter a numeric value. \\
\hline Not compiled after changed. & Compile it. \\
\hline Shortage of resource & Restart the personal computer and try it again. \\
\hline Use after compile edited N coil. & Compile it. \\
\hline Error Specify PI/O Symbol. & Use the correct PIO symbol. \\
\hline <File name> Specified file is wrong. & Specify the correct file. \\
\hline Ncoil Number is irregular (0-\%X) & Use the correct N-coil number. \\
\hline Cannot use this function in offline. & Switch the operation mode to online. \\
\hline Cannot use this function in online. & Switch the operation mode to offline. \\
\hline No change can be made with monitor window open. & Close both the MSC and monitor windows. \\
\hline This function can be used offline only after & Compile it. \\
\hline The specified extension has not supported. & Use the correct or a non-damaged file. \\
\hline It is broken whether file form appointed is wrong. & Spation. extension. \\
\hline \begin{tabular}{l}
This processing can be used only when it agrees \\
with PCs data completely. Send or receive data.
\end{tabular} & Carry out either data transmission or reception. \\
\hline Rewrite failed under RUN status. & Check the connection with the PCs. \\
\hline A specified symbol is illegal. & ladder program. \\
\hline Saving in PSE file is not supported. & Use the correct or a non-damaged file. symbol. \\
\hline PCs type error. & Sape supported file format (wsvl format). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline It failed in time read-out (timeout error). & Reinstall the LADDER CHART SYSTEM. \\
\hline Time information is unfixed. & Set a time value by using the BASE SYSTEM. \\
\hline The number of label registration exceeded maximum. & Check the registered labels. \\
\hline N coil number is outside the range. & Use the correct N -coil number. \\
\hline A label name overlaps within same N coil. & Use a non-duplicated label name. \\
\hline The timeout occurred during ladder program rewriting. & Check the connection with the PCs. \\
\hline \multicolumn{2}{|l|}{It failed in rewriting of a ladder program.} \\
\hline I/O comment storing area is not secured. & Secure an I/O comment area. \\
\hline I/O comment file which transmits are too large. (I/O comment area Size: xx Byte) & Check the I/O comment file. \\
\hline Abnormalities occurred during collection of a sequence cycle time. & Check the connection with the PCs. \\
\hline It failed in preservation of sequence cycle time collection data. & Check the specified file. \\
\hline An extension is invalid. & Use the correct extension. \\
\hline I/O comment storing area is too small (xx Byte is insufficient). & Expand the I/O comment area. \\
\hline A page number is abnormal. & Use the correct page number. \\
\hline A circuit number is abnormal. & Use the correct circuit number. \\
\hline "\%s" of a system extension operation function is not mounted. & Check if an optional module necessary for the system extension arithmetic function is installed. \\
\hline Read Error & Check the connection with the PCs. \\
\hline \multicolumn{2}{|l|}{Communication error} \\
\hline \%s is Used at \%s. The unit cannot be put online. & Wait for its use to come to an end, or, by selection, forcibly release it from the exclusively used state. \\
\hline Canceling occupancy of PCs failed. & Restart this tool and, by selection, forcibly release the PCs from the exclusively used state. To accomplish this, both the personal computer and S 10 V controller need to be in a connected state. \\
\hline
\end{tabular}

\section*{5 APPENDIX}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline It failed in check sum setup. & \multirow[t]{3}{*}{Check the connection with the PCs.} \\
\hline It failed in the setup of transmitting time. & \\
\hline It failed in time read-out (timeout error). & \\
\hline Cannot find system file & Check the specified file. \\
\hline Type of PCs disagrees & Specify a file provided for use with the S 10 V controller. \\
\hline Number of PCs disagrees & Check the PCs number. \\
\hline Capacity of disc is insufficient. & Terminate some of the active application programs and try it again. \\
\hline This address value cannot be specified. Setup address once more. & Set the correct address. \\
\hline This name cannot be used & Use a different name. \\
\hline If you use ufet data at editing circuit, you must restart system. & To use the set UFET data in circuit editing, receive it from the PCs. \\
\hline An operation function address overlaps. & Use a non-duplicated arithmetic (operation) function address. \\
\hline An operation function name overlaps. & Use a non-duplicated arithmetic (operation) function name. \\
\hline Operation function registration address range excess & Use a valid arithmetic (operation) function address. \\
\hline There is no user operation function registration area. & Define a user arithmetic (operation) function area through interaction with the "Change capacity" window. \\
\hline It failed in rewriting of a ladder program. & \multirow[t]{3}{*}{Check the connection with the PCs.} \\
\hline The timeout occurred during ladder program rewriting. & \\
\hline It failed in time read-out (timeout error). & \\
\hline Please set up in even-number size. & Set the size by specifying an even number. \\
\hline The sum total of the specified area size is too large. & Check the area size. \\
\hline Please enter an integer between xx and xx . & Enter an integer in the range xx to xx . \\
\hline Error in the range of branch code. & \multirow[t]{3}{*}{Correct the erroneous circuit.} \\
\hline Relay code is irregular. & \\
\hline Function type code is illegal. & \\
\hline Error in changing timer. & \multirow[t]{3}{*}{Set each timer to a value in the range 1 to 9999.} \\
\hline Error in changing one shot. & \\
\hline Error in changing counter. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline Setting value of timer is illegal. & Enter the timer value again. \\
\hline Setting value of one shot is illegal. & Enter the one-shot timer value again. \\
\hline Setting value of counter is illegal. & Enter the counter value again. \\
\hline Parameter is irregular in operation function. & Specify the correct parameter. \\
\hline Number of parameters over limit in operation function. & Specify only as many parameters as permitted. \\
\hline \(\mathrm{PI} / \mathrm{O}\) address error in operation function. & Specify a symbol number in the permitted range. \\
\hline Address error in user operation function. & Correct the erroneous circuit. \\
\hline Address error in system operation function. & \\
\hline Unregistered operation function. & Use only a specifiable arithmetic (operation) function. \\
\hline Number of parameters disagrees in operation function. & Specify only as many parameters as permitted. \\
\hline Irregular format was found in operation function. & Specify it in the correct format for the arithmetic (operation) function. \\
\hline Failed in changing absolute address to character string. & Correct the erroneous circuit. \\
\hline Immediate data is out of range & Specify an immediate data value in the range permitted for the word type of data. \\
\hline A number of long register extends into word boundary. & Specify a register number not violating word boundaries. \\
\hline Error in range of branch code. & Correct the erroneous circuit. \\
\hline Address error in N coil or P coil. & Use a number in the range 01 to \(0 \times 99\) for the N -coil, or in the range 01 to \(0 x 80\) for the P -coil. \\
\hline Function type "X", "J", "S" is used to coil. & Specify only a permitted register for the coil. \\
\hline Error in PI/O address. & Change the register number to a permitted value. \\
\hline Error in PI/O address of counter. & Specify a counter number in the range 0 to 0 xFF . \\
\hline Error in PI/O address of nesting. & Specify a nesting coil number in the range 0 to 0 x 99 . \\
\hline Error in PI/O address of P coil. & Specify a P-coil number in the range 0 to \(0 \times 80\). \\
\hline Except function type " K " is used to set coil or reset coil. & Use a K-register. \\
\hline Except function type "V", "LV" is used for rising edge contact or falling edge contact. & Use a V- or an LV-register. \\
\hline
\end{tabular}

\section*{5 APPENDIX}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline Function type "C", "K", "N" cannot be applied to coil. & Specify only a permitted register for the coil. \\
\hline Function type "CU", "CD", "CR", "NM", "NZ" cannot be applied to connecting point A or B . & Specify only a permitted register for the a- or b-contact. \\
\hline Function type "V", "LV" cannot be used except to rising edge contact or falling edge contact. & Use a register other than the V- and LV-registers. \\
\hline Exceeded in maximum number of rows for one circuit. & Construct one single circuit of up to 16 lines. \\
\hline Cannot compensate because column position is full. & Reduce the number of symbols used in the single line. \\
\hline Exceeded in maximum number of rows for one circuit. & Construct one single circuit of up to 16 lines. \\
\hline Exceeded in number of rows for one circuit in the process of compensation. & Construct one single circuit of up to 16 lines. \\
\hline No effective circuit data is included. & The ladder chart may have been destroyed. End the ladder chart without saving, and read it in again. Then, if the same error recurs, create the ladder chart again. \\
\hline Setup error in N coil. & Compile the ladder chart again. \\
\hline Error in getting information about SQET setup value. & Compile the ladder chart again. \\
\hline Error in disagreement in branch connecting top to bottom. & Match the number of downward/upward branches between the two successive lines (downward branches in the one line and upward branches in the next line) in the circuit. \\
\hline Error in disagreement in branch connecting to last row. & Correct the circuit so that the last line in the circuit does not contain a downward branch. \\
\hline Connection between left and right is irregular. & Correct the circuit so that it is not broken in its middle. \\
\hline Irregular usage of turn mark. & Use wraparound marks in both the last box of the line whose end is wrapped around to the beginning of the next line, and the first box of that next line. Alternatively, correct the circuit so that no parallel logic path is wrapped around. \\
\hline Branch of top and bottom was used in the line after turn. & Correct the circuit so that the line to which the preceding line is wrapped around is a serial logic path. \\
\hline Area for sequence program is too long. & Increase the ladder program size or reduce the number of circuits used. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline Cannot read sequence program. & \multirow[t]{6}{*}{The ladder chart may have been destroyed. End the ladder chart without saving, and read it in again. Then, if the same error recurs, create the ladder chart again.} \\
\hline Cannot read SQET. & \\
\hline Cannot read setup value of timer. & \\
\hline Cannot read setup value of one shot. & \\
\hline Cannot read setup value of counter. & \\
\hline Information about SQET is not created. & \\
\hline Error in multiple output of coils. & Specify a coil not in use. \\
\hline Error occurred in receiving data of sequencer program. & \multirow[t]{2}{*}{Check the connection with the PCs.} \\
\hline Error occurred in sending data of sequencer program. & \\
\hline No file. & Specify an existing file. \\
\hline The circuit which includes this error is deleted. & Correct the erroneous circuit. \\
\hline PEND is added to ladder program because the number of SEND exceeded the limit. & Compile the ladder chart again. \\
\hline SQET information is damaged. SQET information is made from the ladder program. & Compile the ladder chart again. \\
\hline The ladder program is damaged. SEND is added to the ladder program. & Compile the ladder chart again. \\
\hline Cannot open this file PCs type is not correct. & Specify a ladder file provided for use with the S 10 V controller. \\
\hline Error in redundant address of function type "V". & Specify a V-register number not in use. \\
\hline Error of function type code occurred. & \multirow[t]{2}{*}{Specify a usable register.} \\
\hline Register Name is irregular. & \\
\hline Register Number is irregular. & Specify a usable register number. \\
\hline Specified N coil number is out of range. & Specify a usable N-coil number. \\
\hline Specified measure data position is out of range. & Specify a specifiable box data position. \\
\hline Specified insert line position is out of range. & Specify a specifiable line. \\
\hline TUC setup value is irregular. & Specify a TUC value in the range 1 to 9999. \\
\hline The setting is made at a point where no change can be made. & Specify a place at which a change can be made. \\
\hline Step insert position is irregular. & Specify a place at which steps can be inserted. \\
\hline No space for insert step. & \\
\hline
\end{tabular}

\section*{5 APPENDIX}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline Step cannot be deleted. & Delete a step at any of the boxes in lines 1 through 11. \\
\hline Relay symbol on the last line is irregular. & Set a wraparound mark at the end of the line. \\
\hline Comment file open error. & Specify a comment file that can be opened. \\
\hline Comment file read error. & This error is a system error in the personal computer. Restart the personal computer. \\
\hline Comment file write error. & This error is a system error (due to, for example, a storage shortage on hard disk) in the personal computer. Take an appropriate action on the personal computer so that data may be written to a file on its hard disk. \\
\hline Comment character count is out of range. & Reduce the number of characters used in the comment to 32 characters if only half-size characters are used, or to 16 characters if only full-size characters are used. \\
\hline Range of TUC setup value is irregular. (1-9999) & Specify a TUC value in the range 1 to 9999. \\
\hline Return input point is irregular. & Specify a wraparound mark either in the first box of the line or in the last box of the preceding line. \\
\hline Number of instructions exceeds maximum. & Increase the ladder program size or reduce the number of circuits used. \\
\hline PIO is not set. & Create the ladder chart again. \\
\hline LPET data is not generated. & Compile the ladder chart. \\
\hline Specified relay code is irregular & Specify only an allowable relay code. \\
\hline Parameter is irregular in operation function. & Specify the correct parameter in the arithmetic (operation) function. \\
\hline Parameter dose not specify. & Enter a parameter(s). \\
\hline Number of characters of PIO string is irregular. & Specify the register characters (string) correctly. \\
\hline The width for display is not enough, change to more small character size of comment. & Reduce the character size as far as the characters can be printed. \\
\hline Number of addresses of data with an old name is out of range. & Specify the correct symbol for the data with the old name. \\
\hline Number of addresses of data with a new name is out of range. & Specify the correct symbol for the data with the new name. \\
\hline Data with an old name is not replaceable type data. & Specify data of a replaceable type as data under the old name. \\
\hline Data with a new name is not replaceable type data. & Specify data of a replaceable type as data under the new name. \\
\hline Replacement processing cannot be executed between two cases of specified data in contact. & Specify, for the contact, a symbol allowing symbol name replacement. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline Replacement processing cannot be executed between two cases of specified data in coil and contact. & Specify, for the coil and contact, symbols allowing symbol name replacement. \\
\hline Replacement cannot be executed because data with a new name is already used in coil. & Specify, for data under a new name, a symbol that is not used for any coil. \\
\hline Replacement cannot be executed because data with a new name is already used in contact. & Specify, for data under a new name, a symbol that is not used for any contact. \\
\hline Copy is interrupted because the number of instructions exceeded the maximum. & Increase the ladder program size or reduce the number of circuits used. \\
\hline Substitution handling can't be executed between two data appointed in "Function". & Specify, for the arithmetic (operation) function, a symbol allowing symbol name replacement. \\
\hline Substitution handling can't be executed between two data appointed in "All". & Specify, for all the ladder symbols, a symbol allowing symbol name replacement. \\
\hline Cannot repair the circuit because the instruction is irregular. & The ladder chart may have been destroyed. End the ladder chart without saving, and read it in again. Then, if the same \\
\hline Instruction is damaged. & error recurs, create the ladder chart again. \\
\hline The relay of parallel circuit is irregular. & Correct the ladder chart so that the parallel logic paths may be connected at the proper connecting point. \\
\hline The first symbol of the circuit is not the symbol which can be specified. & Use an appropriate symbol other than branch paths, not including horizontal lines, at the beginning of the logic path. \\
\hline The connection of symbol is irregular. & Use an allowable combination of symbols before and after the detected symbol. \\
\hline An item is unjust. & Specify a count of the number of points in the range \(0 \times 001\) to 0x100. \\
\hline Specification of index register is inaccurate. & Specify the index register correctly. \\
\hline The functional classification of index register is inaccurate. & Specify an allowable register as the index register. \\
\hline It failed in the address conversion to SPU2. & Specify a usable symbol. \\
\hline Specification of an operand is inaccurate. & Specify a symbol correctly as the operand. \\
\hline Specification of the constant of the operand2 is inaccurate. & Specify a symbol or immediate data correctly as operand 2. \\
\hline Register except a word type cannot use it for index register. & Specify a word-type register. \\
\hline
\end{tabular}

\section*{5 APPENDIX}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline There is no work register. & Change the duplicated edge-contact symbol to a non-duplicated one. \\
\hline Unregistered label name. & Additionally register the label, or specify an already registered label name. \\
\hline The setting of label is irregular. & Specify the label of a specifiable place. \\
\hline Error in redundant address of function type "LV". & Specify an LV-register whose number is not used. \\
\hline Cannot open command file. & Specify a comment file that can be opened. \\
\hline Cannot read command file. & This error is a system error (due to, for example, a storage shortage on hard disk) in the personal computer. Take an appropriate action on the personal computer so that data may be written to a file on its hard disk. \\
\hline Cannot write command file. & This error is a system error in the personal computer. Restart the personal computer. \\
\hline Data is invalid (line xx). & Correct the reported line in the instruction file, or create the ladder chart again. \\
\hline There is no N coil index (line xx). & Enter an N -coil line immediately before the reported line in the instruction file. Alternatively, create the ladder chart again. \\
\hline There is no circuit index (line xx). & Enter a logic-path line immediately before the reported line in the instruction file. Alternatively, create the ladder chart again. \\
\hline There is no user operation function index (line xx). & Enter a user arithmetic (operation) function line immediately before the reported line in the instruction file. Alternatively, set the user arithmetic (operation) function again. \\
\hline Error in data format (line xx). & Change the reported line in the instruction file into the correct format. \\
\hline The name of label is irregular (line xx). & Enter the correct label in the reported logic-path line in the instruction file. \\
\hline The position of the ladder program is irregular (line \(x x\)). & Correct the position information in the instruction file so that the position may come within the permitted range. \\
\hline The number of user operation function is irregular (line \(x\) x). & Change the user arithmetic (operation) function number in the instruction file to any number in the range 1 to 128 . \\
\hline The address of user operation function is irregular (line xx). & Change the address of the user arithmetic (operation) function in the instruction file to a proper decimal or hexadecimal number. \\
\hline Index register cannot use it. & Do not use any index register. \\
\hline
\end{tabular}

\subsection*{5.1.2 Error messages from the HI-FLOW SYSTEM}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{c|}{ Required action } \\
\hline \begin{tabular}{l}
Setup for starting process and termination process \\
are not correct
\end{tabular} & \begin{tabular}{l}
A larger number than the ending process number was given as \\
the starting process number in the range-of-processes \\
specification for process deletion. Supply the correct range \\
specification.
\end{tabular} \\
\hline PCs is under down status now & Restart the PCs and try it again. \\
\hline HI-FLOW system doesn't exist in PCs. & Load the HI-FLOW SYSTEM into the PCs.
\end{tabular}

\section*{5 APPENDIX}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline Same condition is setting being completed in timer monitor information in PCs. & Correct the specified timer-monitoring information. \\
\hline Setting number of timer monitor information exceeds a limit. & Check the specified timer-monitoring information. \\
\hline Timer monitor Information Systems specified doesn't exist in PCs top. & Correct the specified timer-monitoring information. \\
\hline Trace condition specified is established already. & Correct the specified trace condition. \\
\hline The step specified doesn't exist. & Correct the specified step number. \\
\hline Stop sending under RUN status. & The transmission was ended abnormally because the PCs was already in RUN state. \\
\hline It failed in opening of system file. & \multirow[t]{3}{*}{The HI-FLOW SYSTEM may have been installed improperly. Install it properly.} \\
\hline Error in reading system file & \\
\hline System file doesn't exist. & \\
\hline It isn't under unstarted status. & The specified process was already started. Check the status of the process. \\
\hline Cannot write to flash memory & \multirow[t]{3}{*}{An internal error occurred in the HI-FLOW SYSTEM. Refer to the error \(\log\) for information.} \\
\hline C/F backup kind error & \\
\hline Cannot purge CMU cache & \\
\hline Canceling occupancy of PCs failed. & Retry it. If the HI-FLOW tool can establish a connection with the PCs, there is no problem. \\
\hline The object has broken. Does it receive continuously? It becomes an application error when an object cannot be restored. & The program on the PCs may have been destroyed. It is recommended that the program be replaced. \\
\hline HI-FLOW program of tool and HI-FLOW program of CPU are disagreement. You had better let a program of CPU agree with a program of tool. & It is recommended that the program be made identical between the tool and CPU by transmission or reception. \\
\hline It is syntax error. Review a construction. & Review the syntax. \\
\hline Stack did overflow. & \multirow[t]{3}{*}{An internal error occurred in the HI-FLOW SYSTEM. Refer to the event \(\log\) for information.} \\
\hline It is stack error. (System error) & \\
\hline User area did overflow. & \\
\hline The cash register who can't use it is used. & Correct the register specification. \\
\hline Figure label isn't defined. & \multirow[t]{2}{*}{Check the figure label and solve the problem.} \\
\hline Double definition in figure label & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline Several of symbol in 1 sentence exceed a limit. (Cross-reference table overflow). & Reduce the number of symbols used in the sentence. \\
\hline The output disk volume of object isn't enough. & A storage shortage occurred on the PC's hard disk. Delete unnecessary files and try it again. \\
\hline A character number of symbol exceeds a limit. & Reduce the number of characters used in the symbol. \\
\hline It is jump symbol error. & Check the jump symbol and solve the problem. \\
\hline It is label error. Review a label. & \multirow[t]{3}{*}{Check the label and solve the problem.} \\
\hline Label number is double definition. & \\
\hline Label number isn't defined. & \\
\hline It is statement error. Review a construction or a label. & Check the syntax or label, and solve the problem. \\
\hline Root-structure is an error. & Check the root-structure and solve the problem. \\
\hline A position of cell wait is unjust. & Check the position of the cell wait and solve the problem. \\
\hline The renewal of label and construction to increase of volume isn't completed. & \multirow[t]{2}{*}{The maximum number of characters that can be used in the sentence construction, label, and comment is 70. Reduce the number of the characters to 70 or less.} \\
\hline The renewal of comment to increase of volume isn't completed. & \\
\hline Failed in information of socket for Windows. & Socket initialization failed due to an error in the Windows system. Restart the personal computer. \\
\hline This is a program of a maximum line. It cannot be inserted. & The maximum number of lines that can be used in a single program is 999 . Reduce the number of the lines used to 999 or less. \\
\hline Specify the key code that is not multidefined. & Specify a non-duplicated key code. \\
\hline This key code cannot be used. Use numeric or alphabet. & Specify the key code with digits and/or letters of the alphabet. \\
\hline
\end{tabular}

\section*{5 APPENDIX}

\subsection*{5.1.3 Error messages from the BASE SYSTEM}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{c|}{ Required action } \\
\hline Cannot reset PCs. & Check the connection with the PCs and try it again. \\
\hline \begin{tabular}{l}
LPU is running. After stopping, clear a battery \\
backup memory.
\end{tabular} & Stop the LPU and then clear the data in the backup memory. \\
\hline \begin{tabular}{l}
A malfunction was detected while the battery \\
backup memory is clear. There is possibility that a \\
battery backup memory isn't cleared.
\end{tabular} & Check the connection with the PCs and try it again. \\
\hline Cannot save memory dump. & Check the connection with the PCs and try it again. \\
\hline The specification of the save file is illegal. & \begin{tabular}{l}
Check the file name of the memory dump file and solve the \\
problem.
\end{tabular} \\
\hline The specification of the top address is illegal. & \begin{tabular}{l}
Specify a proper address as the starting address for memory \\
dump saving.
\end{tabular} \\
\hline The specification of the save size is illegal. & \begin{tabular}{l}
Specify the correct memory dump save size with a hexadecimal \\
number.
\end{tabular} \\
\hline The address is not inputted. & \begin{tabular}{l}
Enter an address for the box for which an address has not been \\
input yet.
\end{tabular} \\
\hline \begin{tabular}{l}
The network ID of IP address and broadcast address \\
is different.
\end{tabular} & \begin{tabular}{l}
Make the network address portion identical between the IP \\
address and broadcast address.
\end{tabular} \\
\hline Invalid specification & The IP address is set incorrectly. Set the correct address value. \\
\hline A specified IP address is invalid. & \begin{tabular}{l}
Check the address and solve the problem.
\end{tabular} \\
\hline \begin{tabular}{l}
A specified IP address is already used at \(<\) Parameter \\
name>
\end{tabular} & \begin{tabular}{l}
Check the address and solve the problem. \\
\hline The IP address of route xx is invalid.
\end{tabular} \\
\hline \begin{tabular}{l}
The IP address of route xx is already used at \\
\(<\) Parameter name> address and solve the problem.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.1.4 Error messages from the FL.NET SYSTEM}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{c|}{ Required action } \\
\hline No option module is mounted. & Check if the FL.NET module is installed properly. \\
\hline Now computing. Please try again later. & \begin{tabular}{l}
The FL.NET module was unable to write the specified values in \\
place because it was busy. Wait for a while and try it again.
\end{tabular} \\
\hline Timeout error & \begin{tabular}{l}
The write to the PCs failed. Check the connection settings to \\
connect with the PCs.
\end{tabular} \\
\hline Please Reset or Power OFF/ON PCs. & \begin{tabular}{l}
Although resetting was attempted, a check could not be made to \\
see if the PCs was reset properly. Try to remote-reset the PCs. \\
Alternatively, manually reset the PCs, or turn off the power to \\
the PCs and back on again.
\end{tabular} \\
\hline Please enter alphanumeric. & \begin{tabular}{l}
A prohibited character(s) are used in the node name. Enter a \\
string of only half-size alphanumeric characters as a node name.
\end{tabular} \\
\hline Address is out of bounds. & An invalid address was detected. Set a valid address value. \\
\hline Address is duplicated. & \begin{tabular}{l}
The addresses of areas 1 and 2 and of the FA link status are \\
duplicated. Check the addresses and solve the problem.
\end{tabular} \\
\hline It is not FL.NET file. & \begin{tabular}{l}
The specified PSE file was not an FL.NET file. Specify an \\
FL.NET file.
\end{tabular} \\
\hline Input ""*.PSE"" file. & \begin{tabular}{l}
The specified file extension was not "PSE". Specify an \\
FL.NET file.
\end{tabular} \\
\hline Sending failed. & \begin{tabular}{l}
The connection was terminated abruptly during data \\
communication. Check the connection status of the \\
communication line.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.1.5 Error messages from the OD.RING/SD.LINK SYSTEM}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{c|}{ Required action } \\
\hline No option module is mounted. & \begin{tabular}{l}
Check if the OD.RING or SD.LINK module is installed \\
properly.
\end{tabular} \\
\hline Beyond address & An invalid address was detected. Set a valid address value. \\
\hline RAS table address error & Set the RAS table again. \\
\hline Cable NG & \begin{tabular}{l}
The cable wiring may have been done incorrectly. Check the \\
cable wiring.
\end{tabular} \\
\hline
\end{tabular}

\section*{5 APPENDIX}

\subsection*{5.1.6 Error messages from the ET.NET SYSTEM}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{c|}{\(\quad\) Required action } \\
\hline \begin{tabular}{l}
The S10V BASE SYSTEM was not installed. \\
Please install it, first.
\end{tabular} & \begin{tabular}{l}
The S10V BASE SYSTEM may not have been installed or may \\
have been destroyed. Install the S10V BASE SYSTEM again.
\end{tabular} \\
\hline No option module is mounted. & Check if the FL.NET module is installed properly. \\
\hline Line error & \begin{tabular}{l}
An attempt to communicate with the PCs failed. Check the \\
connection with the PCs.
\end{tabular} \\
\hline \begin{tabular}{l}
IP address is outside the range. Setting range from \\
class A to class C.
\end{tabular} & \begin{tabular}{l}
An incorrect IP address was specified. Set the correct IP \\
address value.
\end{tabular} \\
\hline A specified IP address is invalid. & \begin{tabular}{l}
The set IP address value was out of the permitted range. Set the \\
correct IP address value.
\end{tabular} \\
\hline A specified IP address is already used at xx. & \begin{tabular}{l}
The specified IP address was duplicated in the set routing \\
information. Set the correct IP address.
\end{tabular} \\
\hline Please enter alphanumeric. & \begin{tabular}{l}
A character other than the half-size alphanumeric characters and \\
hyphen was entered as part of a comment.
\end{tabular} \\
\hline \begin{tabular}{l}
It failed in reset. Please Reset or Power OFF/ON \\
PCs.
\end{tabular} & \begin{tabular}{l}
Although resetting was attempted, a check could not be made to \\
see if the PCs was reset properly. Try to remote-reset the PCs. \\
Alternatively, manually reset the PCs, or turn off the power to \\
the PCs and back on again.
\end{tabular} \\
\hline It failed in reset. Is an IP address setup again? \\
address setup again? & \begin{tabular}{l}
Although resetting was attempted, a check could not be made to \\
see if the PCs was reset properly. Try to remote-reset the PCs. \\
Alternatively, manually reset the PCs, or turn off the power to \\
the PCs and back on again.
\end{tabular} \\
\hline Duplicate station No. was found. & \begin{tabular}{l}
A check could not be made to see if the IP address was set \\
completely. Set the IP address again and, if the same error \\
recurs, check the condition of the communication line.
\end{tabular} \\
\hline IP address duplicates. & \begin{tabular}{l}
The specified ST No. of the ET.NET module was duplicated. \\
Check the ST No. and solve the problem.
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l}
The specified IP address of the ET.NET module was duplicated. \\
Check the IP address and solve the problem.
\end{tabular},

\subsection*{5.1.7 Error messages from the J.NET SYSTEM}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{c|}{ Required action } \\
\hline No option module is mounted. & Check if the J.NET or J.NET-INT module is installed properly. \\
\hline The form of J.NET module is unknown. & \begin{tabular}{l}
The J.NET or J.NET-INT module may be in a failure condition. \\
Replace the module.
\end{tabular} \\
\hline Enter an address. & \begin{tabular}{l}
Although the check box to indicate "addresses not used" is \\
deselected, no addresses were entered. Enter address values for \\
the NET1 and NET2 status table addresses.
\end{tabular} \\
\hline No station type is selected. & Select the desired value as the station type. \\
\hline Duplicated station ID & \begin{tabular}{l}
The specified station number is duplicated with another ID's. \\
Set a non-duplicated station number.
\end{tabular} \\
\hline \begin{tabular}{l}
The sum of input bytes and output bytes cannot \\
exceed \(/ 100\).
\end{tabular} & \begin{tabular}{l}
Reduce the total number of input and output bytes to /100 or \\
less.
\end{tabular} \\
\hline Neither input byte nor output byte may be 0. & \begin{tabular}{l}
When the station type is AUTO, both the input byte and output \\
byte may not be set to 0. Set either the input or output byte to a \\
non-zero value.
\end{tabular} \\
\hline The address is out of bounds. & \begin{tabular}{l}
Incorrect address setting was made. Set the correct address \\
values.
\end{tabular} \\
\hline Duplicated address & \begin{tabular}{l}
The input value was out of the permitted range. Set the \\
transmission speed to a value in the range xx to 19200, or change \\
the set value of transmission delay time.
\end{tabular} \\
\hline Enter between xxbps to 19200bps & \begin{tabular}{l}
Enter a value of 0 or an integer in the range xx to 32767.
\end{tabular} \\
\hline Enter 0 Please enter an integer between xxx and failed & \begin{tabular}{l}
The connection was terminated abruptly during data \\
communication. Check the connection status of the \\
communication line.
\end{tabular} \\
\hline
\end{tabular}

\section*{5 APPENDIX}

\subsection*{5.1.8 Error messages from the IR.LINK SYSTEM}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{c|}{\(\quad\) Required action } \\
\hline No option module is mounted. & Check if the IR.LINK module is installed properly. \\
\hline Enter the refresh cycle time. & Enter an I/O refresh cycle value selected from among the values \\
\hline \begin{tabular}{l}
The refresh cycle time is out of range \((1.5,2,2\), and 3 through 3000. \\
\(3-3000)\).
\end{tabular} & \begin{tabular}{l}
An invalid address was detected. Set a valid address value.
\end{tabular} \\
\hline The status table address is out of range. & Set a non-duplicated station number.
\end{tabular}\(.\)\begin{tabular}{l}
Reduce the total number of input and output bytes to \(/ 100\) or \\
less.
\end{tabular}

\subsection*{5.1.9 Error messages from the CPU LINK SYSTEM}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{c|}{ Required action } \\
\hline Please enter an integer between xxx and xxx. & \begin{tabular}{l}
Enter hexadecimal numbers in the range shown in the error \\
message into the inter-CPU link and inter-sub-CPU link send \\
areas.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.1.10 Error messages from the EXTERNAL SERIAL LINK SYSTEM}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline No option module is mounted. & Check if the RS-232C or RS-422 module is installed properly. \\
\hline The address is out of bounds. & The value that was entered as the starting address was out of the permitted range. Enter a hexadecimal number in the range 0 to 7FFF as the starting address. \\
\hline The system is not loaded. & The Channel No. switch is set incorrectly. Correct the setting. \\
\hline Please Reset or Power OFF/ON PCs. & Although resetting was attempted, a check could not be made to see if the PCs was reset properly. Try to remote-reset the PCs. Alternatively, manually reset the PCs, or turn off the power to the PCs and back on again. \\
\hline Out of bounds & \begin{tabular}{l}
The value that was entered was out of the permitted range. \\
Enter the desired value in one of the following ranges: \\
- 0 to 512 for text size; \\
- 0 to 32767 for transmission suspend monitoring time; or \\
- 0 to 32767 for reception monitoring time.
\end{tabular} \\
\hline Enter between xxxbps to 19200bps & Set the transmission speed to a value in the range xx to 19200, or change the set value of transmission delay time. \\
\hline Enter 19200bps & Set the transmission speed to 19200 , or change the set value of transmission delay time. \\
\hline Please enter an integer between xxx and 32767. & Set the transmission delay time to a value in the range xx to 32767 , or change the set value of transmission speed. \\
\hline Input characters and input value are out of range. Input once more. & Correct the input value. \\
\hline Please enter an integer between 0 and 32 . & Set the start factor to a value in the range 0 to 32 . \\
\hline Please enter an integer between 0 and 255. & Set the start task number to a value in the range 0 to 255 . \\
\hline
\end{tabular}

\section*{5 APPENDIX}

\subsection*{5.1.11 Error messages from the D.NET SYSTEM}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline No option module is mounted. & Check if the D.NET module is installed properly. \\
\hline The refresh time is out of range (\(3 \mathrm{~ms}-1000 \mathrm{~ms}\)) & The input value was out of the permitted range. Set the correct value. \\
\hline Since PCs is occupied, it cannot set up. & An attempt was made to write setting information from more than one place simultaneously. Do not write it simultaneously. \\
\hline Please Reset or Power OFF/ON PCs. & Although resetting was attempted, a check could not be made to see if the PCs was reset properly. Try to remote-reset the PCs. Alternatively, manually reset the PCs, or turn off the power to the PCs and back on again. \\
\hline Sending frames have exceeded maximum sending frames per 10 ms . Reduce output bytes, or increase refresh time. & Reduce the number of output bytes or increase the refresh time. \\
\hline The address of data format conversion of D.STATION (No XX) is not same station. & Make the specified input and output addresses identical to those set in the same station. \\
\hline The entry number of station (Port XX) is exceeded 8. & Reduce the number of set entries using the same address as specified in the station to 8 for D.STATION data format conversion. \\
\hline The assignment data area of data format conversion of D.STATION (No XX) is duplicated the address which is set at the station. & Change the address of the data area assigned for D.STATION data format conversion to an address other than that set in the station. \\
\hline The assignment data area of data format conversion of D.STATION (No XX) is duplicated the slave timeout detection register. & Change the address of the data area assigned for D.STATION data format conversion to an address other than that of the slave timeout detection register. \\
\hline The address of data format conversion of D.STATION (No XX) is out of bounds of the address which is set at the station. & Correct the address used for D.STATION data format conversion. \\
\hline Please input ID. & ID setting was done improperly. Set the correct value. \\
\hline Duplicated ID & \\
\hline Enter an address. & Enter the desired address value. \\
\hline Address is out of bounds. & An invalid address was detected. Set a valid address value. \\
\hline Address is duplicated. & \\
\hline Input 0 or 8. & Enter one of the values 0 or 8 . \\
\hline MACID of self-node is overlapped. & Specify a MAC ID other than the local station's. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{c|}{ Required action } \\
\hline Slave timeout detection register is duplicated. & \begin{tabular}{l}
In the system parameter setting window, the address of the slave \\
timeout detection register is duplicated with the specified input \\
address, output address, or information storage address. \\
Specify a non-duplicated address.
\end{tabular} \\
\hline \begin{tabular}{l}
The port to reserve has exceeded under use or the \\
last port. Please enter an integer between 0 and \\
/xx.
\end{tabular} & \begin{tabular}{l}
Port reservation failed. Specify the number of input or output \\
bytes within the permitted range.
\end{tabular} \\
\hline Please enter an integer between 0 and 3000. & Enter an integer in the range 0 to 3000. \\
\hline Station No. [out of range] & \begin{tabular}{l}
Set the station number with a hexadecimal number in the range \\
0x00 to 0x7F.
\end{tabular} \\
\hline Station No. [registered] & \begin{tabular}{l}
Specify a non-duplicated station number.
\end{tabular} \\
\hline It is not D.NET file. & \begin{tabular}{l}
The specified PSE file was not a PSE file provided for use with \\
the D.NET module. Specify the correct PSE file.
\end{tabular} \\
\hline
\end{tabular}

\section*{5 APPENDIX}

\subsection*{5.1.12 Error messages from the EQ.LINK SYSTEM}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline No option module is mounted. & Check if the EQ.LINK module is installed properly. \\
\hline Now computing. Please try again later. & The EQ.LINK module was unable to write the specified values in place because it was busy. Wait for a while and try it again. \\
\hline Timeout error & The write to the PCs failed. Check the connection settings to connect with the PCs. \\
\hline Please Reset or Power OFF/ON PCs. & Although resetting was attempted, a check could not be made to see if the PCs was reset properly. Try to remote-reset the PCs. Alternatively, manually reset the PCs, or turn off the power to the PCs and back on again. \\
\hline Please enter alphanumeric. & A prohibited character(s) are used in the node name. Enter a string of only half-size alphanumeric characters as a node name. \\
\hline Node number is duplicated. & The node number of the local node is duplicated with a remote node's. \\
\hline Address is out of bounds. & An invalid address was detected. Set a valid address value. \\
\hline Address is duplicated. & An address set as a link parameter for PCs allocation is duplicated with an address set for common memory division. Correct the duplicated address setting. \\
\hline Input PCs address. & \multirow[t]{2}{*}{Enter the PCs address together with a PCs word count, or vice versa.} \\
\hline Input PCs words. & \\
\hline Address is out of bounds. & \multirow[t]{2}{*}{An invalid common memory offset was detected. Set a valid offset value.} \\
\hline Area is duplicated. & \\
\hline PCs words is out bounds. & An invalid PCs word count was detected. Set a valid word count. \\
\hline It has not initialized. & The setup could not be initialized. Check the connection settings to connect with the PCs. \\
\hline It is not EQ.LINK file (Main module). & \multirow[t]{2}{*}{The specified PSE file was not a PSE file provided for use with the EQ.LINK module. Specify the correct PSE file.} \\
\hline It is not EQ.LINK file (Sub module). & \\
\hline Input ""*.PSE"" file. & The specified file extension was not "PSE". Specify an EQ.LINK file. \\
\hline Node information has not been set up. & Parameters are not set for the EQ.LINK module yet. Set parameters via the link parameter setting window. \\
\hline Sending failed. & \multirow[t]{2}{*}{The connection was terminated abruptly during data communication. Check the connection status of the communication line.} \\
\hline Receiving failed. & \\
\hline
\end{tabular}

\subsection*{5.1.13 Error messages from the BACKUP RESTORE SYSTEM}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{c|}{ Required action } \\
\hline Disc is full. Insert new disc. & Replace the storage media piece in the drive. \\
\hline Disc is full. & Increase the available storage space on the hard disk. \\
\hline \begin{tabular}{l}
Cannot write to disc. Confirm if disc is not full or \\
write protect switch is not set.
\end{tabular} & Increase the available storage space on the hard disk. \\
\hline File is not found. & Check if the file and path to it were specified correctly. \\
\hline The specified backup file does not exist. & Specify the folder that was created in the backup operation. \\
\hline Specify a position. & \begin{tabular}{l}
Specify in the "Position" box the path to the folder in which to \\
store the result of a backup operation.
\end{tabular} \\
\hline A specified position is invalid. & \begin{tabular}{l}
Check if the folder identified by a position specification is one in \\
which the result of a backup operation can be stored.
\end{tabular} \\
\hline There is no information on the specified address. & \begin{tabular}{l}
Specify the address of the memory location whose contents were \\
backed up.
\end{tabular} \\
\hline \begin{tabular}{l}
There is an address which overlapped in the backup \\
file.
\end{tabular} & \begin{tabular}{l}
Specify the folder that was created in the backup operation.
\end{tabular} \\
\hline Backupl.wsvl does not exist. & Specify the folder that was created in the backup operation. \\
\hline Please Reset or Power OFF/ON PCs. & Check the connection with the PCs and try it again. \\
\hline The timeout occurred during flash memory \\
rewriting. & \begin{tabular}{l}
Try it again. If the same error recurs, the CMU module needs \\
to be replaced.
\end{tabular} \\
\hline It failed in rewriting of a flash memory. & \begin{tabular}{l}
Try it again. If the same error recurs, carry out a restore \\
operation.
\end{tabular} \\
\hline PCs number disagrees. & \begin{tabular}{l}
Specify the backup file for the SloV controller. \\
as the PCs number used with the S10V controller.
\end{tabular} \\
\hline Check if the specified file is existent in the machine. \\
\hline
\end{tabular}

\section*{5 APPENDIX}

\subsection*{5.1.14 Error messages from the NX/Tools-S10V SYSTEM}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline A file to transfer is not chosen. & Choose the file to be transferred. \\
\hline A specified file is not the setup information file of NX. & Check the specified file. \\
\hline A setup can not be done any further because it exceeds the number which TCD information can be established to. & The maximum number of TCD information cases that can be registered is 96 . \\
\hline A wrong point was detected during the file access. & Check the specified file. \\
\hline A setup information file not found. Confirm whether you do not mistake the designation of the folder. & Check the specified folder. \\
\hline A system program file not found. Confirm whether you do not mistake the designation of the folder. & Check the specified folder. \\
\hline Please Reset PCs. & Try to remote-reset the PCs. Alternatively, manually reset the PCs, or turn off the power to the PCs and back on again. \\
\hline NX/HOST-S10V system is not found. & Check the specified folder. \\
\hline Unjust information is included in the changed file. Does it correct? & Correct the file. \\
\hline It failed in preservation of a file. & Try it again. \\
\hline The specified file is the type which is not convertible. & Check the specified file. \\
\hline Data field number is not found. Set a data field number. & Specify a data field (DF) number. \\
\hline Data field number is out of range. Set a data field number between 1 and 255 . & Specify a DF number in the range 1 to 255. \\
\hline Data field number is multiple defined. Set a unique number. & Specify a unique DF number. \\
\hline Node name is not found. Set a node name. & Specify a node name. \\
\hline Logical node number is not found. Set a logical node number. & Specify a logical node number. \\
\hline Logical node number is out of range. Set a logical node number between 1 and 255 . & Specify a logical node number in the range 1 to 255 . \\
\hline Alive message timeout is not found. Set a alive message timeout. & Set an "alive" message timeout period and try it again. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline Alive message timeout is out of range. Set a alive message timeout between 1 and 43200. & Specify an "alive" message timeout period in the range 1 to 43200. \\
\hline Alive message interval is not found. Set a Alive message interval. & Set an "alive" message transmission interval and try it again. \\
\hline Alive message interval is out of range. Set a alive message interval between 1 and 3600 . & Specify an "alive" message transmission interval in the range 1 to 3600 . \\
\hline Alive port is not found. Set a alive port number. & Set an "alive" message destination port number and try it again. \\
\hline Alive port is out of range. Set a alive port number between 1 and 65535. & Specify an "alive" message destination port number in the range 1 to 65535 . \\
\hline Alive port number is multiple defined. Set a unique number. & Specify a unique "alive" message destination port number. \\
\hline Send my port is not found. Set a send my port number. & Set a send local-port number and try it again. \\
\hline Send my port is out of range. Set a send my port number between 1 and 65535 . & Specify a send local-port number in the range 1 to 65535. \\
\hline Send my port number is multiple defined. Set a unique number. & Specify a unique "alive" message destination port number. \\
\hline Send MCG No. is not found. Set a send MCG No. & Sea a send MCG number and try it again. \\
\hline Send MCG No. is out of range. Set a send MCG No. between 0 and 255. & Specify a send MCG number in the range 0 to 255 . \\
\hline Send MCG No. is multiple defined. Set a unique number. & Specify a unique send MCG number \\
\hline Send port No. is not found. Set a send port No. & Set a send port number and try it again. \\
\hline Send port No. is out of range. Set a send port No. between 1 and 65535. & Specify a send port number in the range 1 to 65535. \\
\hline Send MCG No. is multiple defined. Set a unique number. & Specify a unique send port number. \\
\hline Receive MCG No. is not found. Set a receive MCG No. & Set a receive MCG number and try it again. \\
\hline Receive MCG No. is out of range. Set a receive MCG No. between 0 and 255. & Specify a receive MCG number in the range 0 to 255 . \\
\hline Receive MCG No. is multiple defined. Set a unique number. & Specify a unique receive MCG number. \\
\hline
\end{tabular}

\section*{5 APPENDIX}
\begin{tabular}{|c|c|}
\hline Error message & Required action \\
\hline Receive port No. is not found. Set a receive port No. & Define the receive port number and try it again. \\
\hline Receive port No. is out of range. Set a receive port No. between 1 and 65535. & Specify a receive port number in the range 1 to 65535 . \\
\hline Receive MCG No. is multiple defined. Set a unique number. & Specify a unique receive port number. \\
\hline Port number is multiple defined. Set a unique number. & Specify a unique port number. \\
\hline MCG number is multiple defined. Set a unique number. & Specify a unique MCG number. \\
\hline Alive message timeout is smaller than a Alive message interval. & Specify an "alive" message timeout period that is longer than the "alive" message transmission interval. \\
\hline TCD number is out of range. Set a tcd number between 0 and 59999. & Specify a TCD number in the range 0 to 59999. \\
\hline TCD number is multiple defined. Set a unique number. & Specify a unique TCD number. \\
\hline Send byte number is not found. Set a send byte number. & Set a send byte count and try it again. \\
\hline Send byte number is out of range. Set a send byte number between 0 and 1408 . & Specify a send byte count in the range 0 to 1408 . \\
\hline Receive byte number is not found. Set a receive byte number. & Set a receive byte count and try it again. \\
\hline Receive byte number is out of range. Set a receive byte number between 0 and 1408 . & Specify a receive byte count in the range 0 to 1408 . \\
\hline \begin{tabular}{l}
TCD information on send or receive is not found. \\
Set a TCD information on send or receive.
\end{tabular} & Set a send/receive TCD information and try it again. \\
\hline During send register is not found. Set a during send register. & Set a during-send register name and try it again. \\
\hline The receive completion register is the same as during send register. & Specify two different registers, one as the during-send register and one as the receive completion register. \\
\hline During send register is multiple defined. Set a unique number. & Specify a unique during-send register. \\
\hline During send register is inaccurate. & Check the during-send register. \\
\hline Send address is not found. Set a send address. & Set a send address and try it again. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{c|}{ Required action } \\
\hline Transmitting area overlaps. & Check the send area and solve the problem. \\
\hline Send address is inaccurate. & Correct the send address. \\
\hline \begin{tabular}{l}
Receive completion register is not found. Set a \\
receive completion register.
\end{tabular} & Set a receive completion register name and try it again. \\
\hline \begin{tabular}{l}
Receive completion register is multiple defined. \\
Set a unique number.
\end{tabular} & Specify a unique receive completion register. \\
\hline Receive completion register is inaccurate. & Check the receive completion register. \\
\hline \begin{tabular}{l}
Receive address is not found. Set a receive \\
address.
\end{tabular} & Set a receive address and try it again. \\
\hline Receiving area overlaps. & Check the receive area and solve the problem. \\
\hline Receive address is inaccurate. & Correct the receive address. \\
\hline \begin{tabular}{l}
Retrial number of times is not found. Set a retrial \\
number of times.
\end{tabular} & Set a retry count and try it again. \\
\hline \begin{tabular}{l}
Retrial number of times is out of range. Set a \\
Retrial number of times between 1 and \\
2147483647.
\end{tabular} & Specify a retry count in the range 1 to 2147483647. \\
\hline \begin{tabular}{l}
Receiving waiting time is not found. Set a \\
receiving waiting time.
\end{tabular} & Set a receive wait time and try it again. \\
\hline \begin{tabular}{l}
Receiving waiting time is out of range. Set a \\
receiving waiting time between 10 and 1000.
\end{tabular} & Specify a receive wait time in the range 10 to 1000. \\
\hline \begin{tabular}{l}
An odd-byte setup cannot be performed. Please \\
set up by even bytes.
\end{tabular} & Set it up by even-numbered bytes. \\
\hline \begin{tabular}{l}
Send MCG No. is out of range. Set a send MCG \\
No. between 1 and 255.
\end{tabular} & Specify a send MCG number in the range 1 to 255. \\
\hline
\end{tabular}

\section*{5 APPENDIX}

\subsection*{5.1.15 Error messages from the tools}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{c|}{ Required action } \\
\hline \begin{tabular}{l}
Failed in initialization of OLE. Confirm if the \\
OLE library is right version or not.
\end{tabular} & \begin{tabular}{l}
No such OLE library is existent or, if it is existent, its version is \\
old. Install the latest version of the OLE library.
\end{tabular} \\
\hline \begin{tabular}{l}
Line error \\
\(<\) Detail information> \\
ID = type of issued command \\
Access address (address of the PCs) \\
Access word count \\
error code = error code from the Windows system \\
Error message corresponding to the above error \\
code, presented by the Windows system
\end{tabular} & \begin{tabular}{l}
The communication line's connections or settings may be \\
incomplete, or the PCs may not be up and running. Check the \\
connections of the physical communication line and, if \\
necessary, change the connected PCs by redoing its settings.
\end{tabular} \\
\hline A required execution module is not found. & \begin{tabular}{l}
The tool may have been installed improperly or destroyed. \\
Restart it. If the same error recurs, reinstall it.
\end{tabular} \\
\hline \begin{tabular}{l}
Cannot read drive \%1. Confirm if drive is shut, \\
disc has no error or disc is formatted, etc..
\end{tabular} & \begin{tabular}{l}
Check the FD drive. \\
\hline Capacity of disc is insufficient.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.2 Trouble Report}

Fill out this form and submit it to local source.
```


[^0]:    Type
    $0=$ Normal trace.
    $1=$ Special trace

[^1]:    ${ }^{*}$ ) A byte-swapped value is set.

    C: Client.
    : Applicable.

[^2]:    $\left(^{*}\right)$ A byte-swapped value is set

[^3]:    ${ }^{(*)}$ A byte-swapped value is set.

