HIGH WALL SYSTEM ERROR CODES & FAULT DIAGNOSIS

Aidea

Contents

PAGE	ERROR	EXPLANATION
Page 3	E0/F4	EEPROM Error
Page 4-5	E1	Communication between indoor and outdoor unit
Page 6	E2	Zero Crossing signal detection error
Pages 7-12	E3	Fan motor speed is abnormal
Pages 13-14	E4/E5/F1/F2/F3	Temperature sensor failure
Page 15	EC	Refrigerant Leak Detection
Page 16	FO	Overcurrent Protection
Pages 17-23	PO	IPM Protection
Pages 24-25	P1	Voltage abnormal
Page 26	P4	Inverter Drive Error
Pages 27-28	N/A	Information Enquiry Mode
Pages 29-33		Full outdoor PCB voltage checking

Text in RED highlights that the method for the check is shown in this document

E0/F4 – EEPROM Parameter Error

Error Code	E0 / F4
Malfunction	Indoor or outdoor PCB main
decision	chip does not receive
conditions	feedback from EEPROM chip.
Possible	 Installation mistake
causes	Faulty PCB

The EO/F4 fault can be caused by electrical interference during start up so a hard restart is recommended

If this doesn't rectify it, the likelihood is the main pcb has been damaged so this will need to be replaced

E0 – Indoor PCB F4 – Outdoor PCB

E1 – Communication between indoor and outdoor

Error Code	E1
Malfunction decision conditions	Indoor unit does not receive the feedback from outdoor unit during 110 seconds and this condition happens four times
Possible causes	Wiring mistakeFaulty indoor or outdoor PCB

- Check all your connections are good
- Check cable for continuity
- If using 4 Core interconnecting method make sure the W spade connection has been moved to 1(L) on the condensing unit

E1 – Communication between indoor and outdoor

Error Code	E1
Malfunction decision conditions	Indoor unit does not receive the feedback from outdoor unit during 110 seconds and this condition happens four times
Possible causes	Wiring mistakeFaulty indoor or outdoor PCB

If all is ok with field cabling and wiring

- Use your multimeter to measure the dc voltage between terminals S & N (black tester S / red tester N)
- If the voltage is fixed it is the indoor board at fault
- If the voltage fluctuates but only with positive values it is the outdoor board at fault
- Check spade connections onto boards. If all is good, condemn the applicable PCB

E2 – Zero Crossing signal detection error

The PCB is unable to control the zero crossing time interval and is therefore unable to control the AC fan motor speed correctly

- Check the power supply voltage and connections, both installation cables and pcb cables
- If these are both good, try restarting the system
- If this fails condemn the indoor PCB

800 RPM

L L

E3/F5 – Fan speed is abnormal

Error Code	E3/F5(DP) E3/E7(DB)
Malfunction decision conditions	When fan speed keeps too low (300RPM) for certain time, the unit will stop and the LED will display the failure.
Possible causes	 Wiring mistake Faulty fan wheel (fan blade) Faulty fan motor Faulty PCB Surge

- Does the fan blade spin by hand? If not, clear the obstruction and restart the system
- Are all the connections and wiring between the fan motor and pcb ok? If not, remedy and restart the system
- If both of these are good we need to check the fan motor and the PCB

Indoor fan motor problem (AC motor)

Measure the resistance value of each winding by using the multi-meter.

Position	Resistance Value		
	YKFG-20-4-5-11	YKFG-28-4-3-7	YKFG-45-4-22
Black - Red	400 ±8%	414 ±8%	172 ±8%
	(20°C)	(20°C)	(20°C)
White - Black	383 ±8%	231 ±8%	138 ±8%
	(20°C)	(20°C)	(20°C)

Indoor PCB problem

Power on and set the unit running in fan mode at high fan speed. After running for 15 seconds, measure the voltage of pin1 and pin2 (Red-Black). If the value of the voltage is less than 100V (208~240V power supply) or 50V (115V power supply), the PCB must has problems and need to be replaced.

Windings Check

Voltage Check

Fan motor problem (DC motor that control chip inside the motor)

Power on and when the unit is in standby, measure the voltage of pin1-pin3, pin4-pin3 of fan motor connector. If the value of the voltage is not in the range shown in below table, the PCB is at fault and need to be replaced.

DC motor voltage input and output:

NO.	Color	Signal	Voltage
1	Red	Vs/Vm	280V~380V
2			
3	Black	GND	0V
4	White	Vcc	14-17.5V
5	Yellow	Vsp	0~5.6V
6	Blue	FG	14-17.5V

Outdoor fan motor problem (DC motor that control chip on the PCB)

- Release the UVW connector. Measure the resistance of U-V, U-W, V-W. If the resistance is not equal to each other, the fan motor as it fault and needs to be replaced. Otherwise, go to step 2.
- 2) Power on and when the unit is in standby, measure the voltage of pin 4-5 in the feedback signal connector. If the value is not 5V, change the PCB. Otherwise, go to step 3.
- 3) Rotate the fan by hand, measure the voltage of pin1-5, pin 2-5 and pin 3-5 in feedback signal connector. If any voltage is not positive voltage fluctuation, the fan motor is faulty and needs to be replaced.

NO.	1	2	3	4	5
Color	Orange	Grey	White	Pink	Black
Signal	Hu	Hv	Hw	Vcc	GND

Outdoor fan motor problem (DC motor that control chip on the PCB)

Release the UVW connector. Measure the resistance of U-V, U-W, V-W. If the resistance is not equal to each other, the fan motor is faulty and needs to be replaced

E4/E5/F1/F2/F3 – Temperature sensor failure

Error Code	E4/E5/F1/F2/F3	
Malfunction decision conditions	If the sampling voltage is lower than 0.06V or higher than 4.94V, the LED will display the failure.	
Possible causes	 Wiring mistake Faulty Sensor Faulty PCB 	

Check the connections of the sensor, the placement of the sensor and also the cable condition. If all is good, measure the resistance of the sensor using the Resistance curve table. Also check the values using Info Enquiry Mode

- E4 T1 Fault Indoor Ambient
- E5 T2 Fault Indoor Coil
- F1 T4 Fault Outdoor ambient
- F2 T3 Fault Outdoor coil
- F3 T5 Fault Compressor Discharge

Midea

E4/E5/F1/F2/F3 – Temperature sensor failure

Actual tables can be found in the full service manual. For the graph:

X axis – Temperature

Y axis - Resistance

EC – Refrigerant Leak Detection

Error Code	EC(DP)
Malfunction decision conditions	Define initial evaporator coil temperature T2 when the compressor just starts running as T_{cool} . In the first 8 minutes after the compressor starts up, if T2 $< T_{cool}$ -2 does not keep continuous 4 seconds, and this situation happens 3 times, the display area will show "EC" and AC will turn off.
Possible causes	 Faulty T2 sensor Faulty indoor PCB System problems, such as leakage or blocking.

Most likely a refrigerant leak. Restart the system and check the operating pressure. If all is good its most likely the indoor coil sensor has been misplaced and is unable to sense the change in temperature. If its in the correct position check the resistance

F0 – **Overcurrent Protection**

Error Code	F0
Malfunction decision conditions	An abnormal current rise is detected by checking the specified current detection circuit.
Possible causes	 Power supply problems. System blockage Faulty PCB Wiring mistake Compressor malfunction

Test the actual current the unit is pulling. If the current is fine and the error remains the outdoor pcb is at fault. If the current is actually high check both the outdoor coil for blockages and restricted airflow. Check the fan rotation by hand. If the problem is displayed straight after power up on standy mode replace the outdoor pcb

Midea

PO – IPM Protection

Error Code	P0(DP) P0(DB)
Malfunction decision conditions	When the voltage signal that IPM send to compressor drive chip is abnormal, the display LED will show "P0" and AC will turn off.
Possible causes	 Wiring mistake IPM malfunction Faulty outdoor fan motor Compressor malfunction Faulty outdoor PCB Surge

Check all wiring connections, especially where the jack plug connections meet. Check IPM Continuity. Replace main pcb if it is faulty. Check fan motor using E3 error method. Make sure airflow and ventilation of the outdoor coil is good. Check Compressor resistances. If all is good, change the main pcb. Check the Reactor

IPM Continuity Check

IPM Continuity Check

IPM Continuity Check – Continuity Ranges

Continuity Ranges using the ohm measurement of your multi meter

	Needle-type Tester		Normal Resistance Value		Needle-ty	pe Tester	Normal Pasistance Value	
					Red	Black	Normal Resistance value	
	Black	Red	Resistance value			U	~	
		Ν	∞ (Several MΩ)	N	N	V	\sim	
		U				١٨/	(Several MΩ)	
	Р	V				vv		
		W						

IPM Continuity Check – Continuity Ranges

You can also test the IPM using diode mode of your multi meter

Needle-ty	pe Tester	Nie wood Nie bae	Needle-type Test		pe Tester		
Red	Black	Normal value		Red	Black	Normal value	
	U		Ν		U		
Р	V	Open-circuit		Ν	V	300-500	
	W			W			
Needle-type Tester		Newsol Malue		Needle-type Tester		Normal Value	
Black	Red	Normal value		Black	Red	Normal value	
Black	Red U	Normarvalue		Black	Red U	Normal value	
Black P	Red U V	300-500		Black N	Red U V	Open-circuit	
Black P	Red U V W	300-500		Black N	Red U V W	Open-circuit	

Compressor Check

Compressor check

Disconnect the compressor and check the resistance between U-V, V-W and U-W, and all 3 values should be equal. If not, the compressor is faulty and should be replaced. Also check each winding to ground to make sure it hasn't been earthed. Any reading will indicate the compressor is faulty

	Resistance Value Reference							
Compressor	ASN98D22U	DA130M1C-	DA200S2C-	ATM115D1	DA108X1C-	DA130S1C-	DA150S1C-	DA250S2C-
model	EZ	31FZ	10MT	UFZ	23EZ	20FZ	20FZ	30MT
U - V	1 570	1 770	0 570	1 900	1 10	0.050		
V - W	(20°C)	(20%) $(20%)$	1.0902)	1.1 <u>2</u>	(20°C)	(20%)	(20°C)	
U - W	(20 C)	(20 C)	(20 C)	(20 C)	(20 C)	(20 C)	(20 C)	(20 C)

Midea®

22

Reactor Check

Reactor check

Measure the resistance and voltage (to ground) of the reactor. The normal resistance should be **around 0^{1}\Omega**.

P1 – DC Voltage abnormal

Error Code	P1(DP) P10/P11(DB)	Check if the power supply is normal.	No	 Disconnect the unit with power supply and try to restart the unit when power supply gets normal.
Malfunction decision conditions	An abnormal voltage rise or drop is detected by checking the specified voltage detection circuit.	Yes Check if all the connections		Correct the connections or replace
Possible causes	 Power supply problems. Faulty rectifier PCB faulty 	and wires are good? Yes	No	the wires.
The most likely cau this is first thing to connections. Check the voltage is incor changed	ise is a drop in the supply voltage so check. Check all mains power to the DC voltage between P and N. If prect the main pcb needs to be	Power on and when the unit is in standby, check if the voltage between P and N is around DC 310V or 340V or 380V? For different kinds of units, the voltage differs. Consult with technical engineer to get definite value. Then start up the unit, measure the voltage between P and N. Is it in 220V~400V? Yes	No	Replace the IPM board if it is separate with main PCB.
				24

P1 – Voltage check

DC Voltage should be 310V/340V/380V in standby mode

P4 – Inverter Drive Error

Error Code	P4			
Malfunction decision conditions	An abnormal inverter compressor drive signal is calculated by the detection circuit.			
Possible causes	 Wiring mistake IPM malfunction Faulty outdoor fan motor Compressor malfunction Faulty outdoor PCB Surge 			

Check the wiring between the compressor and the PCB. Check the IPM Continuity. Check the airflow and Fan motor and also Check Compressor.

P4 errors can also error on badly commissioned systems. A lack of vacuum drying can cause a P4

Information Enquiry – How to enter

Switch the unit on, press the LED button 3 times in quick succession, now press the swing button 3 times (even when the display is off)

After 3 seconds the unit will enter Info Equiry mode

We can access the system running parameters using this method

Information Enquiry – Data available

Abbreviation	Element
T1	Indoor room temperature
T2	Coil temperature of evaporator
Т3	Coil temperature of condenser
T4	Outdoor ambient temperature
TS	Set temperature
ТР	Compressor discharge temperature
Tsc	Adjusted setting temperature

Using the LED and swing buttons you can cycle through the items in the table on the right to help with commissioning data and/or fault diagnosis

Displayed code	Explanation	Additional Notes
T1	п	T1 temperature
T2	51	T2 temperature
T3	TB	T3 temperature
T4	TH	T4 temperature
ТР	TP	TP temperature
Targeted frequency	FT	Targeted Frequency
Actual frequency	TR	Actual Frequency
Compressor current	OL	N/A
Outdoor AC voltage	UO	N/A
Indoor capacity test	รก	N/A
Reserve		Running mode
Outdoor fan speed	PR	Outdoor fan speed
EXV opening angle	LR	EXV opening angle
Indoor fan speed	R	Indoor fan speed
Indoor humidity	HU	N/A
Adjusted setting temperature	π	N/A
Indoor dust concentrations	DT	N/A
WIFI signal strength	F	N/A
GA algorithm frequency	OT	N/A

Check AC voltage value between L and N. If the measured value is around 230V, then go to next step.

1. Check AC input

Check Rectifier's AC input voltage value between L and N. If the measured value is around 230V, it means the fuse, the inductor and the ntc are ok, then go to next step.

Check Rectifier' s DC output voltage value between + and -. If the measured value is around 325V, it means the rectifier is ok, then go to next step.

N L S

4. Check PG Voltage

Check PG's DC voltage and it should higher than 300V, it means the cap, the pfc inductor and the frd are ok, then go to next step.

I

5. Check SMPS Voltage

Check SMPS DC voltage and it supply 15VDC, 12VDC and 5VDC. If 3 voltage is correct, it means the SMPS is ok, then may be the MCU failure.

